Search Results

Now showing 1 - 7 of 7
Loading...
Thumbnail Image
Item

Coordination chemistry and photoswitching of dinuclear macrocyclic cadmium-, nickel-, and zinc complexes containing azobenzene carboxylato co-ligands

2019, Klose, Jennifer, Severin, Tobias, Hahn, Peter, Jeremies, Alexander, Bergmann, Jens, Fuhrmann, Daniel, Griebel, Jan, Abel, Bernd, Kersting, Berthold

The synthesis of mixed-ligand complexes of the type [M2L(μ-L')]+, where L represents a 24-membered macrocyclic hexaaza-dithiophenolate ligand, L' is an azobenzene carboxylate co-ligand, and M = Cd(II), Ni(II) or Zn(II), is reported. A series of new complexes were synthesized, namely [M2L(μ-L')]+ (L' = azo-H, M = Cd (1), Ni (2); L' = azo-OH, M = Zn (3), Ni (4); L' = azo-NMe2, M = Zn (5), Cd (6), Ni (7); L' = azo-CO2Me, M = Cd (8), Ni (9)), and characterized by elemental analysis, electro-spray ionization mass spectrometry (ESIMS), IR, UV–vis and NMR spectroscopy (for diamagnetic Zn and Cd complexes) and X-ray single crystal structure analysis. The crystal structures of 3' and 5–8 display an isostructural series of compounds with bridging azobenzene carboxylates in the trans form. The paramagnetic Ni complexes 2, 4 and 7 reveal a weak ferromagnetic exchange interaction with magnetic exchange coupling constant values between 21 and 23 cm−1 (H = −2JS1S2). Irradiation of 1 with λ = 365 nm reveals a photoisomerization of the co-ligand from the trans to the cis form. © 2019 Klose et al.

Loading...
Thumbnail Image
Item

Dinuclear lanthanide complexes supported by a hybrid salicylaldiminato/calix[4]arene-ligand: Synthesis, structure, and magnetic and luminescence properties of (HNEt3)[Ln2(HL)(L)] (Ln = SmIII, EuIII, GdIII, TbIII)

2019, Ullmann, Steve, Hahn, Peter, Blömer, Laura, Mehnert, Anne, Laube, Christian, Abel, Bernd, Kersting, Berthold

The synthesis, structures, and properties of a new calix[4]arene ligand with an appended salicylaldimine unit (H4L = 25-[2-((2-methylphenol)imino)ethoxy]-26,27,28-trihydroxy-calix[4]arene) and four lanthanide complexes (HNEt3)[Ln2(HL)(L)] (Ln = SmIII (4), EuIII (5), GdIII (6), and TbIII (7)) are reported. X-ray crystallographic analysis (for 4 and 6) reveals an isostructural series of dimeric complexes with a triply-bridged NO3Ln(μ-O)2(OH⋯O)LnO3N core and two seven coordinated lanthanide ions. According to UV-vis spectrometric titrations in MeCN and ESI-MS the dimeric nature is maintained in solution. The apparent stability constants range between logK = 5.8 and 6.3. The appended salicylaldimines sensitize EuIII and TbIII emission (λexc 311 nm) in the solid state or immersed in a polycarbonate glass at 77 K (for 5, 7) and at 295 K (for 7). © The Royal Society of Chemistry 2019.

Loading...
Thumbnail Image
Item

Green-Emissive Zn2+ Complex Supported by a Macrocyclic Schiff-Base/Calix[4]arene-Ligand: Crystallographic and Spectroscopic Characterization

2021, Ullmann, Steve, Börner, Martin, Kahnt, Axel, Abel, Bernd, Kersting, Berthold

The macrocyclic calix[4]arene ligand H2L comprises two non-fluorescent 2,6-bis-(iminomethyl)phenolate chromophores, which show a chelation-enhanced fluorescence enhancement upon Zn2+ ion complexation. Macrocyclic [ZnL] complexes aggregate in the absence of external coligands via intermolecular Zn−N bonds to give dimeric [ZnL]2 structures comprising two five-coordinated Zn2+ ions. The absorption and emission wavelengths are bathochromically shifted upon going from the liquid (λmax,abs (CH2Cl2)=404 nm, λmax,em (CH2Cl2)=484 nm) to the solid state (λmax,abs=424 nm (4 wt%, BaSO4 pellet), λmax,em=524 nm (neat solid)). Insights into the electronic nature of the UV-vis transitions were obtained with time-dependent density functional theory (TD-DFT) calculations for a truncated model complex.

Loading...
Thumbnail Image
Item

Probing the magnetic superexchange couplings between terminal CuII ions in heterotrinuclear bis(oxamidato) type complexes

2017-4-6, Abdulmalic, Mohammad A., Weheabby, Saddam, Meva, Francois E., Aliabadi, Azar, Kataev, Vladislav, Büchner, Bernd, Schleife, Frederik, Kersting, Berthold, Rüffer, Tobias

The reaction of one equivalent of [n-Bu4N]2[Ni(opboR2)] with two equivalents of [Cu(pmdta)(X)2] afforded the heterotrinuclear CuIINiIICuII containing bis(oxamidato) type complexes [Cu2Ni(opboR2)(pmdta)2]X2 (R = Me, X = NO3– (1); R = Et, X = ClO4– (2); R = n-Pr, X = NO3– (3); opboR2 = o-phenylenebis(NR-substituted oxamidato); pmdta = N,N,N’,N”,N”-pentamethyldiethylenetriamine). The identities of the heterotrinuclear complexes 1–3 were established by IR spectroscopy, elemental analysis and single-crystal X-ray diffraction studies, which revealed the cationic complex fragments [Cu2Ni(opboR2)(pmdta)2]2+ as not involved in any further intermolecular interactions. As a consequence thereof, the complexes 1–3 possess terminal paramagnetic [Cu(pmdta)]2+ fragments separated by [NiII(opboR2)]2– bridging units representing diamagnetic SNi = 0 states. The magnetic field dependence of the magnetization M(H) of 1–3 at T = 1.8 K has been determined and is shown to be highly reproducible with the Brillouin function for an ideal paramagnetic spin = 1/2 system, verifying experimentally that no magnetic superexchange couplings exists between the terminal paramagnetic [Cu(pmdta)]2+ fragments. Susceptibility measurements versus temperature of 1–3 between 1.8–300 K were performed to reinforce the statement of the absence of magnetic superexchange couplings in these three heterotrinuclear complexes.

Loading...
Thumbnail Image
Item

Mixed-ligand lanthanide complexes supported by ditopic bis(imino-methyl)-phenol/calix[4]arene macrocycles: synthesis, structures, and luminescence properties of [Ln2(L2)(MeOH)2] (Ln = La, Eu, Tb, Yb)

2020, Ullmann, Steve, Hahn, Peter, Mini, Parvathy, Tuck, Kellie L., Kahnt, Axel, Abel, Bernd, Gutierrez Suburu, Matias E., Strassert, Cristian A., Kersting, Berthold

The lanthanide binding ability of a macrocyclic ligand H6L2 comprising two bis(iminomethyl)phenol and two calix[4]arene units has been studied. H6L2 is a ditopic ligand which provides dinuclear neutral complexes of composition [Ln2(L2)(MeOH)2] (Ln = La (1), Eu (2), Tb (3), and Yb (4)) in very good yield. X-ray crystal structure analyses for 2 and 3 show that (L2)6- accommodates two seven coordinated lanthanide ions in a distorted monocapped trigonal prismatic/octahedral coordination environment. UV-vis spectroscopic titrations performed with La3+, Eu3+, Tb3+ and Yb3+ ions in mixed MeOH/CH2Cl2 solution (I = 0.01 M NBu4PF6) reveal that a 2 : 1 (metal : ligand) stoichiometry is present in solution, with log K11 and K21 values ranging from 5.25 to 6.64. The ratio α = K11/K21 of the stepwise formation constants for the mononuclear (L2 + M = ML2, log K11) and the dinuclear complexes (ML2 + M = M2L2, log K21) was found to be invariably smaller than unity indicating that the binding of the first Ln3+ ion augments the binding of the second Ln3+ ion. The present complexes are less luminescent than other seven-coordinated Eu and Tb complexes, which can be traced to vibrational relaxation of excited EuIII and TbIII states by the coligated MeOH and H2O molecules and/or low-lying ligand-to-metal charge-transfer (LMCT) states. © 2020 The Royal Society of Chemistry.

Loading...
Thumbnail Image
Item

Deposition of exchange-coupled dinickel complexes on gold substrates utilizing ambidentate mercapto-carboxylato ligands

2017, Börner, Martin, Blömer, Laura, Kischel, Marcus, Richter, Peter, Salvan, Georgeta, Zahn, Dietrich R. T., Siles, Pablo F., Fuentes, Maria E. N., Bufon, Carlos C. B., Grimm, Daniel, Schmidt, Oliver G., Breite, Daniel, Abel, Bernd, Kersting, Berthold

The chemisorption of magnetically bistable transition metal complexes on planar surfaces has recently attracted increased scientific interest due to its potential application in various fields, including molecular spintronics. In this work, the synthesis of mixed-ligand complexes of the type [NiII2L(L’)](ClO4), where L represents a 24-membered macrocyclic hexaazadithiophenolate ligand and L’ is a ω-mercapto-carboxylato ligand (L’ = HS(CH2)5CO2− (6), HS(CH2)10CO2− (7), or HS(C6H4)2CO2− (8)), and their ability to adsorb on gold surfaces is reported. Besides elemental analysis, IR spectroscopy, electrospray ionization mass spectrometry (ESIMS), UV–vis spectroscopy, and X-ray crystallography (for 6 and 7), the compounds were also studied by temperature-dependent magnetic susceptibility measurements (for 7 and 8) and (broken symmetry) density functional theory (DFT) calculations. An S = 2 ground state is demonstrated by temperature-dependent susceptibility and magnetization measurements, achieved by ferromagnetic coupling between the spins of the Ni(II) ions in 7 (J = +22.3 cm−1) and 8 (J = +20.8 cm−1; H = −2JS1S2). The reactivity of complexes 6–8 is reminiscent of that of pure thiolato ligands, which readily chemisorb on Au surfaces as verified by contact angle, atomic force microscopy (AFM) and spectroscopic ellipsometry measurements. The large [Ni2L] tail groups, however, prevent the packing and self-assembly of the hydrocarbon chains. The smaller film thickness of 7 is attributed to the specific coordination mode of the coligand. Results of preliminary transport measurements utilizing rolled-up devices are also reported.

Loading...
Thumbnail Image
Item

Heterobimetallic conducting polymers based on salophen complexes via electrosynthesis

2023, Bia, Francesca, Gualandi, Isacco, Griebel, Jan, Rasmussen, Leon, Hallak, Bassam, Tonelli, Domenica, Kersting, Berthold

In this work, we report the first electrochemical synthesis of two copolymeric bimetallic conducting polymers by a simple anodic electropolymerization method. The adopted precursors are electroactive transition metal (M = Ni, Cu and Fe) salophen complexes, which can be easily obtained by direct chemical synthesis. The resulting films, labeled poly-NiCu and poly-CuFe, were characterized by cyclic voltammetry in both organic and aqueous media, attenuated total reflectance Fourier transform infrared spectroscopy, UV-vis spectroscopy, scanning electron microscopy, and coupled energy dispersive X-ray spectroscopy. The films are conductive and exhibit great electrochemical stability in both organic and aqueous media (resistant over 100 cycles without significant loss in current response or changes in electrochemical behavior), which makes them good candidates for an array of potential applications. Electrochemical detection of ascorbic acid was performed using both materials.