Search Results

Now showing 1 - 2 of 2
  • Item
    Electron-to Hole Transport Change Induced by Solvent Vapor Annealing of Naphthalene Diimide Doped with Poly(3-Hexylthiophene)
    (Lausanne : Frontiers Media, 2021) Janus, Krzysztof; Danielewicz, Kinga; Chlebosz, Dorota; Goldeman, Waldemar; Kiersnowski, Adam
    Herein we report on fabrication and properties of organic field-effect transistors (OFETs) based on the spray-coated films of N,N′-dioctyl naphthalene diimide (NDIC8) doped with 2.4 wt% of poly (3-hexylthiophene) (P3HT). OFETs with the untreated NDIC8:P3HT films revealed electron conductivity [μe* = 5 × 10–4 cm2×(Vs)−1]. After the annealing in chloroform vapor the NDIC8:P3HT films revealed the hole transport only [μh* = 0.9 × 10–4 cm2×(Vs)−1]. Due to the chemical nature and energy levels, the hole transport was not expected for NDIC8-based system. Polarized optical- and scanning electron microscopies indicated that the solvent vapor annealing of the NDIC8:P3HT films caused a transition of their fine-grained morphology to the network of branched, dendritic crystallites. Grazing incidence wide-angle X-ray scattering studies indicated that the above transition was accompanied by a change in the crystal structure of NDIC8. The isotropic crystal structure of NDIC8 in the untreated film was identical to the known crystal structure of the bulk NDIC8. After the solvent annealing the crystal structure of NDIC8 changed to a not-yet-reported polymorph, that, unlike in the untreated film, was partially oriented with respect to the OFET substrate.
  • Item
    Switching from electron to hole transport in solution-processed organic blend field-effect transistors
    (Basel : MDPI, 2020) Fidyk, Julia; Waliszewski, Witold; Sleczkowski, Piotr; Kiersnowski, Adam; Pisula, Wojciech; Marszalek, Tomasz
    Organic electronics became an attractive alternative for practical applications in complementary logic circuits due to the unique features of organic semiconductors such as solution processability and ease of large-area manufacturing. Bulk heterojunctions (BHJ), consisting of a blend of two organic semiconductors of different electronic affinities, allow fabrication of a broad range of devices such as light-emitting transistors, light-emitting diodes, photovoltaics, photodetectors, ambipolar transistors and sensors. In this work, the charge carrier transport of BHJ films in field-effect transistors is switched from electron to hole domination upon processing and post-treatment. Low molecular weight n-type N,N′-bis(n-octyl)-(1,7&1,6)-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDI8-CN2) was blended with p-type poly[2,5-bis(3-tetradecylthiophene-2-yl)thieno[3,2-b]thiophene] (PBTTT-C14) and deposited by spin-coating to form BHJ films. Systematic investigation of the role of rotation speed, solution temperature, and thermal annealing on thin film morphology was performed using atomic force microscopy, scanning electron microscopy, and grazing incidence wide-angle X-ray scattering. It has been determined that upon thermal annealing the BHJ morphology is modified from small interconnected PDI8-CN2 crystals uniformly distributed in the polymer fraction to large planar PDI8-CN2 crystal domains on top of the blend film, leading to the switch from electron to hole transport in field-effect transistors.