Search Results

Now showing 1 - 2 of 2
  • Item
    Time-reversal symmetry breaking type-II Weyl state in YbMnBi2
    (London : Nature Publishing Group, 2019) Borisenko, S.; Evtushinsky, D.; Gibson, Q.; Yaresko, A.; Koepernik, K.; Kim, T.; Ali, M.; van den Brink, J.; Hoesch, M.; Fedorov, A.; Haubold, E.; Kushnirenko, Y.; Soldatov, I.; Schäfer, R.; Cava, R.J.
    Spectroscopic detection of Dirac and Weyl fermions in real materials is vital for both, promising applications and fundamental bridge between high-energy and condensed-matter physics. While the presence of Dirac and noncentrosymmetric Weyl fermions is well established in many materials, the magnetic Weyl semimetals still escape direct experimental detection. In order to find a time-reversal symmetry breaking Weyl state we design two materials and present here experimental and theoretical evidence of realization of such a state in one of them, YbMnBi2. We model the time-reversal symmetry breaking observed by magnetization and magneto-optical microscopy measurements by canted antiferromagnetism and find a number of Weyl points. Using angle-resolved photoemission, we directly observe two pairs of Weyl points connected by the Fermi arcs. Our results not only provide a fundamental link between the two areas of physics, but also demonstrate the practical way to design novel materials with exotic properties.
  • Item
    Possible experimental realization of a basic Z 2 topological semimetal in GaGeTe
    (College Park, MD : American Institute of Physics, 2019) Haubold, E.; Fedorov, A.; Pielnhofer, F.; Rusinov, I.P.; Menshchikova, T.V.; Duppel, V.; Friedrich, D.; Weihrich, R.; Pfitzner, A.; Zeugner, A.; Isaeva, A.; Thirupathaiah, S.; Kushnirenko, Y.; Rienks, E.; Kim, T.; Chulkov, E.V.; Büchner, B.; Borisenko, S.
    We report experimental and theoretical evidence that GaGeTe is a basic Z2 topological semimetal with three types of charge carriers: bulk-originated electrons and holes as well as surface state electrons. This electronic situation is qualitatively similar to the classic 3D topological insulator Bi2Se3, but important differences account for an unprecedented transport scenario in GaGeTe. High-resolution angle-resolved photoemission spectroscopy combined with advanced band structure calculations show a small indirect energy gap caused by a peculiar band inversion at the T-point of the Brillouin zone in GaGeTe. An energy overlap of the valence and conduction bands brings both electron and holelike carriers to the Fermi level, while the momentum gap between the corresponding dispersions remains finite. We argue that peculiarities of the electronic spectrum of GaGeTe have a fundamental importance for the physics of topological matter and may boost the material's application potential.