Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Experimental proof of Joule heating-induced switched-back regions in OLEDs

2020, Kirch, Anton, Fische, Axel, Liero, Matthias, Fuhrmann, Jürgen, Glitzky, Annegret, Reineke, Sebastian

Organic light-emitting diodes (OLEDs) have become a major pixel technology in the display sector, with products spanning the entire range of current panel sizes. The ability to freely scale the active area to large and random surfaces paired with flexible substrates provides additional application scenarios for OLEDs in the general lighting, automotive, and signage sectors. These applications require higher brightness and, thus, current density operation compared to the specifications needed for general displays. As extended transparent electrodes pose a significant ohmic resistance, OLEDs suffering from Joule self-heating exhibit spatial inhomogeneities in electrical potential, current density, and hence luminance. In this article, we provide experimental proof of the theoretical prediction that OLEDs will display regions of decreasing luminance with increasing driving current. With a two-dimensional OLED model, we can conclude that these regions are switched back locally in voltage as well as current due to insufficient lateral thermal coupling. Experimentally, we demonstrate this effect in lab-scale devices and derive that it becomes more severe with increasing pixel size, which implies its significance for large-area, high-brightness use cases of OLEDs. Equally, these non-linear switching effects cannot be ignored with respect to the long-term operation and stability of OLEDs; in particular, they might be important for the understanding of sudden-death scenarios. © 2020, The Author(s).

Loading...
Thumbnail Image
Item

Interdot Lead Halide Excess Management in PbS Quantum Dot Solar Cells

2022, Albaladejo‐Siguan, Miguel, Becker‐Koch, David, Baird, Elizabeth C., Hofstetter, Yvonne J., Carwithen, Ben P., Kirch, Anton, Reineke, Sebastian, Bakulin, Artem A., Paulus, Fabian, Vaynzof, Yana

Light-harvesting devices made from lead sulfide quantum dot (QD) absorbers are one of the many promising technologies of third-generation photovoltaics. Their simple, solution-based fabrication, together with a highly tunable and broad light absorption makes their application in newly developed solar cells, particularly promising. In order to yield devices with reduced voltage and current losses, PbS QDs need to have strategically passivated surfaces, most commonly achieved through lead iodide and bromide passivation. The interdot spacing is then predominantly filled with residual amorphous lead halide species that remain from the ligand exchange, thus hindering efficient charge transport and reducing device stability. Herein, it is demonstrated that a post-treatment by iodide-based 2-phenylethlyammonium salts and intermediate 2D perovskite formation can be used to manage the lead halide excess in the PbS QD active layer. This treatment results in improved device performance and increased shelf-life stability, demonstrating the importance of interdot spacing management in PbS QD photovoltaics.

Loading...
Thumbnail Image
Item

Electrothermal Tristability Causes Sudden Burn-In Phenomena in Organic LEDs

2021, Kirch, Anton, Fischer, Axel, Liero, Matthias, Fuhrmann, Jürgen, Glitzky, Annegret, Reineke, Sebastian

Organic light-emitting diodes (OLEDs) have been established as a mature display pixel technology. While introducing the same technology in a large-area form factor to general lighting and signage applications, some key questions remain unanswered. Under high-brightness conditions, OLED panels were reported to exhibit nonlinear electrothermal behavior causing lateral brightness inhomogeneities and even regions of switched-back luminance. Also, the physical understanding of sudden device failure and burn-ins is still rudimentary. A safe and stable operation of lighting tiles, therefore, requires an in-depth understanding of these physical phenomena. Here, it is shown that the electrothermal treatment of thin-film devices allows grasping the underlying physics. Configurations of OLEDs with different lateral dimensions are studied as a role model and it is reported that devices exceeding a certain panel size develop three stable, self heating-induced operating branches. Switching between them causes the sudden formation of dark spots in devices without any preexisting inhomogeneities. A current-stabilized operation mode is commonly used in the lighting industry, as it ensures degradation-induced voltage adjustments. Here, it is demonstrated that a tristable operation always leads to destructive switching, independent of applying constant currents or voltages. With this new understanding of the effects at high operation brightness, it will be possible to adjust driving schemes accordingly, design more resilient system integrations, and develop additional failure mitigation strategies. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH