Search Results

Now showing 1 - 3 of 3
  • Item
    Remarkable Mechanochromism in Blends of a π-Conjugated Polymer P3TEOT: The Role of Conformational Transitions and Aggregation
    (Weinheim : Wiley-VCH, 2020) Zessin, Johanna; Schnepf, Max; Oertel, Ulrich; Beryozkina, Tetyana; König, Tobias A.F.; Fery, Andreas; Mertig, Michael; Kiriy, Anton
    A novel mechanism for well-pronounced mechanochromism in blends of a π-conjugated polymer based on reversible conformational transitions of a chromophore rather than caused by its aggregation state, is exemplified. Particularly, a strong stretching-induced bathochromic shift of the light absorption, or hypsochromic shift of the emission, is found in blends of the water-soluble poly(3-tri(ethylene glycol)) (P3TEOT) embedded into the matrix of thermoplastic polyvinyl alcohol. This counterintuitive phenomenon is explained in terms of the concentration dependency of the P3TEOT's aggregation state, which in turn results in different molecular conformations and optical properties. A molecular flexibility, provided by low glass transition temperature of P3TEOT, and the fact that P3TEOT adopts an intermediate, moderately planar conformation in the solid state, are responsible for the unusual complex mechanochromic behavior. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Nanoimprint Lithography Facilitated Plasmonic-Photonic Coupling for Enhanced Photoconductivity and Photocatalysis
    (Weinheim : Wiley-VCH, 2021) Gupta, Vaibhav; Sarkar, Swagato; Aftenieva, Olha; Tsuda, Takuya; Kumar, Labeesh; Schletz, Daniel; Schultz, Johannes; Kiriy, Anton; Fery, Andreas; Vogel, Nicolas; König, Tobias A.F.
    Imprint lithography has emerged as a reliable, reproducible, and rapid method for patterning colloidal nanostructures. As a promising alternative to top-down lithographic approaches, the fabrication of nanodevices has thus become effective and straightforward. In this study, a fusion of interference lithography (IL) and nanosphere imprint lithography on various target substrates ranging from carbon film on transmission electron microscope grid to inorganic and dopable polymer semiconductor is reported. 1D plasmonic photonic crystals are printed with 75% yield on the centimeter scale using colloidal ink and an IL-produced polydimethylsiloxane stamp. Atomically smooth facet, single-crystalline, and monodisperse colloidal building blocks of gold (Au) nanoparticles are used to print 1D plasmonic grating on top of a titanium dioxide (TiO2) slab waveguide, producing waveguide-plasmon polariton modes with superior 10 nm spectral line-width. Plasmon-induced hot electrons are confirmed via two-terminal current measurements with increased photoresponsivity under guiding conditions. The fabricated hybrid structure with Au/TiO2 heterojunction enhances photocatalytic processes like degradation of methyl orange (MO) dye molecules using the generated hot electrons. This simple colloidal printing technique demonstrated on silicon, glass, Au film, and naphthalenediimide polymer thus marks an important milestone for large-scale implementation in optoelectronic devices. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Self-Replication of Deeply Buried Doped Silicon Structures, which Remotely Control the Etching Process: A New Method for Forming a Silicon Pattern from the Bottom Up
    (Weinheim : Wiley-VCH, 2021) Schutzeichel, Christopher; Kiriy, Nataliya; Kiriy, Anton; Voit, Brigitte
    A typical microstructuring process utilizes photolithographic masks to create arbitrary patterns on silicon substrates in a top-down approach. Herein, a new, bottom-up microstructuring method is reported, which enables the patterning of n-doped silicon substrates to be performed without the need for application of etch-masks or stencils during the etching process. Instead, the structuring process developed herein involves a simple alkaline etching performed under illumination and is remotely controlled by the p-doped micro-sized implants, buried beneath a homogeneous n-doped layer at depths of 0.25 to 1 µm. The microstructuring is realized because the buried implants act upon illumination as micro-sized photovoltaic cells, which generate a flux of electrons and increase the negative surface charge in areas above the implants. The locally increased surface charge causes a local protection of the native silicon oxide layer from alkaline etching, which ultimately leads to the microstructuring of the substrate. In this way, substrates having at their top a thick layer of homogeneously n-doped silicon can be structured, reducing the need for costly, time-consuming photolithography steps. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH