Search Results

Now showing 1 - 5 of 5
  • Item
    A Printable Paste Based on a Stable n-Type Poly[Ni-tto] Semiconducting Polymer
    (Basel : MDPI, 2019) Tkachov, Roman; Stepien, Lukas; Greifzu, Moritz; Kiriy, Anton; Kiriy, Nataliya; Schüler, Tilman; Schmiel, Tino; López, Elena; Brückner, Frank; Leyens, Christoph
    Polynickeltetrathiooxalate (poly[Ni-tto]) is an n-type semiconducting polymer having outstanding thermoelectric characteristics and exhibiting high stability under ambient conditions. However, its insolubility limits its use in organic electronics. This work is devoted to the production of a printable paste based on a poly[Ni-tto]/PVDF composite by thoroughly grinding the powder in a ball mill. The resulting paste has high homogeneity and is characterized by rheological properties that are well suited to the printing process. High-precision dispenser printing allows one to apply both narrow lines and films of poly[Ni-tto]-composite with a high degree of smoothness. The resulting films have slightly better thermoelectric properties compared to the original polymer powder. A flexible, fully organic double-leg thermoelectric generator with six thermocouples was printed by dispense printing using the poly[Ni-tto]-composite paste as n-type material and a commercial PEDOT-PSS paste as p-type material. A temperature gradient of 100 K produces a power output of about 20 nW. © 2019 by the authors.
  • Item
    AB- Versus AA+BB-Suzuki Polycondensation: A Palladium/Tris(tert-butyl)phosphine Catalyst Can Outperform Conventional Catalysts
    (Weinheim : Wiley-VCH, 2020) Zhang, Kenan; Tkachov, Roman; Ditte, Kristina; Kiriy, Nataliya; Kiriy, Anton; Voit, Brigitte
    A Pd/Pt-Bu3 catalyst having bulky, electron-rich ligands significantly outperforms conventional “step-growth catalysts” Pd(PPh3)4 and Pd(Po-Tol3)3 in the Suzuki polycondensation of the AB-type arylene-based monomers, such as some of the substituted fluorenes, carbazoles, and phenylenes. In the AA+BB polycondensation, Pd/Pt-Bu3 also performs better under homogeneous reaction conditions, in combination with the organic base Et4NOH. The superior performance of Pd/Pt-Bu3 is discussed in terms of its higher reactivity in the oxidative addition step and inherent advantages of the intramolecular catalyst transfer, which is a key step joining catalytic cycles of the AB-polycondensation. These findings are applied to the synthesis of a carbazole-based copolymer designed for the use as a hole conductor in solution-processed organic light-emitting diodes. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • Item
    Sequentially Processed P3HT/CN6-CP•−NBu4+ Films: Interfacial or Bulk Doping?
    (Weinheim : Wiley-VCH, 2020) Karpov, Yevhen; Kiriy, Nataliya; Formanek, Petr; Hoffmann, Cedric; Beryozkina, Tetyana; Hambsch, Mike; Al-Hussein, Mahmoud; Mannsfeld, Stefan C.B.; Büchner, Bernd; Debnath, Bipasha; Bretschneider, Michael; Krupskaya, Yulia; Lissel, Franziska; Kiriy, Anton
    Derivatives of the hexacyano-[3]-radialene anion radical (CN6-CP•−) emerge as a promising new family of p-dopants having a doping strength comparable to that of archetypical dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane (F4TCNQ). Here, mixed solution (MxS) and sequential processing (SqP) doping methods are compared by using a model semiconductor poly(3-hexylthiophene) (P3HT) and the dopant CN6-CP•−NBu4 + (NBu4 + = tetrabutylammonium). MxS films show a moderate yet thickness-independent conductivity of ≈0.1 S cm−1. For the SqP case, the highest conductivity value of ≈6 S cm−1 is achieved for the thinnest (1.5–3 nm) films whereas conductivity drops two orders of magnitudes for 100 times thicker films. These results are explained in terms of an interfacial doping mechanism realized in the SqP films, where only layers close to the P3HT/dopant interface are doped efficiently, whereas internal P3HT layers remain essentially undoped. This structure is in agreement with transmission electron microscopy, atomic force microscopy, and Kelvin probe force microscopy results. The temperature-dependent conductivity measurements reveal a lower activation energy for charge carriers in SqP samples than in MxS films (79 meV vs 110 meV), which could be a reason for their superior conductivity. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Self-Replication of Deeply Buried Doped Silicon Structures, which Remotely Control the Etching Process: A New Method for Forming a Silicon Pattern from the Bottom Up
    (Weinheim : Wiley-VCH, 2021) Schutzeichel, Christopher; Kiriy, Nataliya; Kiriy, Anton; Voit, Brigitte
    A typical microstructuring process utilizes photolithographic masks to create arbitrary patterns on silicon substrates in a top-down approach. Herein, a new, bottom-up microstructuring method is reported, which enables the patterning of n-doped silicon substrates to be performed without the need for application of etch-masks or stencils during the etching process. Instead, the structuring process developed herein involves a simple alkaline etching performed under illumination and is remotely controlled by the p-doped micro-sized implants, buried beneath a homogeneous n-doped layer at depths of 0.25 to 1 µm. The microstructuring is realized because the buried implants act upon illumination as micro-sized photovoltaic cells, which generate a flux of electrons and increase the negative surface charge in areas above the implants. The locally increased surface charge causes a local protection of the native silicon oxide layer from alkaline etching, which ultimately leads to the microstructuring of the substrate. In this way, substrates having at their top a thick layer of homogeneously n-doped silicon can be structured, reducing the need for costly, time-consuming photolithography steps. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Charge Carrier Mobility Improvement in Diketopyrrolopyrrole Block-Copolymers by Shear Coating
    (Basel : MDPI, 2021) Ditte, Kristina; Kiriy, Nataliya; Perez, Jonathan; Hambsch, Mike; Mannsfeld, Stefan C.B.; Krupskaya, Yulia; Maragani, Ramesh; Voit, Brigitte; Lissel, Franziska
    Shear coating is a promising deposition method for upscaling device fabrication and enabling high throughput, and is furthermore suitable for translating to roll-to-roll processing. Although common polymer semiconductors (PSCs) are solution processible, they are still prone to mechanical failure upon stretching, limiting applications in e.g., electronic skin and health monitoring. Progress made towards mechanically compliant PSCs, e.g., the incorporation of soft segments into the polymer backbone, could not only allow such applications, but also benefit advanced fabrication methods, like roll-to-roll printing on flexible substrates, to produce the targeted devices. Tri-block copolymers (TBCs), consisting of an inner rigid semiconducting poly-diketo-pyrrolopyrrole-thienothiophene (PDPP-TT) block flanked by two soft elastomeric poly(dimethylsiloxane) (PDMS) chains, maintain good charge transport properties, while being mechanically soft and flexible. Potentially aiming at the fabrication of TBC-based wearable electronics by means of cost-efficient and scalable deposition methods (e.g., blade-coating), a tolerance of the electrical performance of the TBCs to the shear speed was investigated. Herein, we demonstrate that such TBCs can be deposited at high shear speeds (film formation up to a speed of 10 mm s−1). While such high speeds result in increased film thickness, no degradation of the electrical performance was observed, as was frequently reported for polymer−based OFETs. Instead, high shear speeds even led to a small improvement in the electrical performance: mobility increased from 0.06 cm2 V−1 s−1 at 0.5 mm s−1 to 0.16 cm2 V−1 s−1 at 7 mm s−1 for the TBC with 24 wt% PDMS, and for the TBC containing 37 wt% PDMS from 0.05 cm2 V−1 s−1 at 0.5 mm s−1 to 0.13 cm2 V−1 s−1 at 7 mm s−1. Interestingly, the improvement of mobility is not accompanied by any significant changes in morphology.