Search Results

Now showing 1 - 2 of 2
  • Item
    Water footprint analysis for the assessment of milk production in Brandenburg (Germany)
    (München : European Geopyhsical Union, 2010) Drastig, K.; Prochnow, A.; Kraatz, S.; Klauss, H.; Plöchl, M.
    The working group "Adaptation to Climate Change" at the Leibniz-Institute for Agricultural Engineering Potsdam-Bornim (ATB) is introduced. This group calculates the water footprint for agricultural processes and farms, distinguished into green water footprint, blue water footprint, and dilution water footprint. The green and blue water demand of a dairy farm plays a pivotal role in the regional water balance. Considering already existing and forthcoming climate change effects there is a need to determine the water cycle in the field and in housing for process chain optimisation for the adaptation to an expected increasing water scarcity. Resulting investments to boost water productivity and to improve water use efficiency in milk production are two pathways to adapt to climate change effects. In this paper the calculation of blue water demand for dairy farming in Brandenburg (Germany) is presented. The water used for feeding, milk processing, and servicing of cows over the time period of ten years was assessed in our study. The preliminary results of the calculation of the direct blue water footprint shows a decreasing water demand in the dairy production from the year 1999 with 5.98×109 L/yr to a water demand of 5.00×109 L/yr in the year 2008 in Brandenburg because of decreasing animal numbers and an improved average milk yield per cow. Improved feeding practices and shifted breeding to greater-volume producing Holstein-Friesian cow allow the production of milk in a more water sustainable way. The mean blue water consumption for the production of 1 kg milk in the time period between 1999 to 2008 was 3.94±0.29 L. The main part of the consumed water seems to stem from indirect used green water for the production of feed for the cows.
  • Item
    Water use indicators at farm scale: Methodology and case study
    (Hoboken, NJ : Wiley-Blackwell Publishing Ltd, 2012) Prochnow, A.; Drastig, K.; Klauss, H.; Berg, W.
    Indicators for water use at farm scale can assist farmers in understanding the water flows on their farms and in optimizing water use by adapting agronomic measures and farm management. The objective of this work is to develop a methodology to estimate water flows at the farm scale, to derive indicators for farm water use, and to apply them in a first case study. After the spatial and temporal boundaries of the farm system and the water flows are defined, three indicators to assess water use at the farm scale are developed: farm water productivity, degree of water utilization, and specific inflow of technical water. Farm water productivity describes the ratio of farm output to water input, where the water input is the total of those water inflows into the farm system that can be assigned to the generation of farm output. Farm output is expressed on a mass basis, food energy basis, and monetary basis. The degree of water utilization characterizes the relationship between productive water to the total water inflow into the farm system, where productive water comprises those water flows that directly contribute to biomass generation via plant and animal metabolism. The specific technical water inflow quantifies the water inflow into the system by technical means relative to the farm area. The application of the methodology in a first case study for a mixed crop-livestock farm with 2869 ha in Germany results in a farm water productivity of 2.30 kg fresh mass per mWinput-3, 1.03 kg dry mass per m Winput-3, 5.96 GJ m Winput-3, and 0.25 € mWinput-3. The degree of water utilization is 0.56. The specific technical water inflow is 36.5 m3 ha-1 year -1. Factors that mainly effect these indicators and general approaches to optimize water use in farms are discussed as well as the further research required for practical implementation.