Search Results

Now showing 1 - 2 of 2
  • Item
    Time-dependent simulation of thermal lensing in high-power broad-area semiconductor lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Zeghuzi, Anissa; Wünsche, Hans-Jürgen; Wenzel, Hans; Radziunas, Mindaugas; Fuhrmann, Jürgen; Klehr, Andreas; Bandelow, Uwe; Knigge, Andrea
    We propose a physically realistic and yet numerically applicable thermal model to account for short and long term self-heating within broad-area lasers. Although the temperature increase is small under pulsed operation, a waveguide that is formed within a few-ns-long pulse can result in a transition from a gain-guided to an index-guided structure, leading to near and far field narrowing. Under continuous wave operation the longitudinally varying temperature profile is obtained self-consistently. The resulting unfavorable narrowing of the near field can be successfully counteracted by etching trenches.
  • Item
    Amplifications of picosecond laser pulses in tapered semiconductor amplifiers : numerical simulations versus experiments
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Tronciu, Vasile; Schwertfeger, Sven; Radziunas, Mindaugas; Klehr, Andreas; Bandelow, Uwe; Wenzel, Hans
    We apply a travelling wave model to the simulation of the amplification of laser pulses generated by Q-switched or mode-locked distributed-Bragg reflector lasers. The power amplifier monolithically integrates a ridge-waveguide section acting as pre-amplifier and a flared gain-region amplifier. The diffraction limited and spectral-narrow band pulses injected in to the pre-amplifier have durations between 10 ps and 100 ps and a peak power of typical 1 W. After the amplifier, the pulses reach a peak power of several tens of Watts preserving the spatial, spectral and temporal properties of the input pulse. We report results obtained by a numerical solution of the travelling-wave equations and compare them with experimental investigations. The peak powers obtained experimentally are in good agreement with the theoretical predictions. The performance of the power amplifier is evaluated by considering the dependence of the pulse energy as a function of different device and material parameters.