Search Results

Now showing 1 - 6 of 6
  • Item
    Development of a flow-fluorescence in situhybridization protocol for the analysis of microbial communities in anaerobic fermentation liquor
    (London : BioMed Central, 2013) Nettmann, Edith; Fröhling, Antje; Heeg, Kathrin; Klocke, Michael; Schlüter, Oliver; Mumme, Jan
    Background: The production of bio-methane from renewable raw material is of high interest because of the increasing scarcity of fossil fuels. The process of biomethanation is based on the inter- and intraspecific metabolic activity of a highly diverse and dynamic microbial community. The community structure of the microbial biocenosis varies between different biogas reactors and the knowledge about these microbial communities is still fragmentary. However, up to now no approaches are available allowing a fast and reliable access to the microbial community structure. Hence, the aim of this study was to originate a Flow-FISH protocol, namely a combination of flow cytometry and fluorescence in situ hybridization, for the analysis of the metabolically active microorganisms in biogas reactor samples. With respect to the heterogenic texture of biogas reactor samples and to collect all cells including those of cell aggregates and biofilms the development of a preceding purification procedure was indispensable. Results: Six different purification procedures with in total 29 modifications were tested. The optimized purification procedure combines the use of the detergent sodium hexametaphosphate with ultrasonic treatment and a final filtration step. By this treatment, the detachment of microbial cells from particles as well as the disbandment of cell aggregates was obtained at minimized cell loss. A Flow-FISH protocol was developed avoiding dehydration and minimizing centrifugation steps. In the exemplary application of this protocol on pure cultures as well as biogas reactor samples high hybridization rates were achieved for commonly established domain specific oligonucleotide probes enabling the specific detection of metabolically active bacteria and archaea. Cross hybridization and autofluorescence effects could be excluded by the use of a nonsense probe and negative controls, respectively. Conclusions: The approach described in this study enables for the first time the analysis of the metabolically active fraction of the microbial communities within biogas reactors by Flow-FISH.
  • Item
    Dynamic variation of the microbial community structure during the long-time mono-fermentation of maize and sugar beet silage
    (Milton Park : Taylor & Francis, 2015) Klang, Johanna; Theuerl, Susanne; Szewzyk, Ulrich; Huth, Markus; Tölle, Rainer; Klocke, Michael
    This study investigated the development of the microbial community during a long-term (337 days) anaerobic digestion of maize and sugar beet silage, two feedstocks that significantly differ in their chemical composition. For the characterization of the microbial dynamics, the community profiling method terminal restriction fragment length polymorphism (TRFLP) in combination with a cloning-sequencing approach was applied. Our results revealed a specific adaptation of the microbial community to the supplied feedstocks. Based on the high amount of complex compounds, the anaerobic conversion rate of maize silage was slightly lower compared with the sugar beet silage. It was demonstrated that members from the phylum Bacteroidetes are mainly involved in the degradation of low molecular weight substances such as sugar, ethanol and acetate, the main compounds of the sugar beet silage. It was further shown that species of the genus Methanosaeta are highly sensitive against sudden stress situations such as a strong decrease in the ammonium nitrogen (NH4 +-N) concentration or a drop of the pH value. In both cases, a functional compensation by members of the genera Methanoculleus and/or Methanosarcina was detected. However, the overall biomass conversion of both feedstocks proceeded efficiently as a steady state between acid production and consumption was recorded, which further resulted in an equal biogas yield.
  • Item
    Impact of surface structure and feed gas composition on Bacillus subtilis endospore inactivation during direct plasma treatment
    (Lausanne : Frontiers Media, 2015) Hertwig, Christian; Steins, Veronika; Reineke, Kai; Rademacher, Antje; Klocke, Michael; Rauh, Cornelia; Schlüter, Oliver
    This study investigated the inactivation efficiency of cold atmospheric pressure plasma treatment on Bacillus subtilis endospores dependent on the used feed gas composition and on the surface, the endospores were attached on. Glass petri-dishes, glass beads, and peppercorns were inoculated with the same endospore density and treated with a radio frequency plasma jet. Generated reactive species were detected using optical emission spectroscopy. A quantitative polymerase chain reaction (qPCR) based ratio detection system was established to monitor the DNA damage during the plasma treatment. Argon + 0.135% vol. oxygen + 0.2% vol. nitrogen as feed gas emitted the highest amounts of UV-C photons and considerable amount of reactive oxygen and nitrogen species. Plasma generated with argon + 0.135% vol. oxygen was characterized by the highest emission of reactive oxygen species (ROS), whereas the UV-C emission was negligible. The use of pure argon showed a negligible emission of UV photons and atomic oxygen, however, the emission of vacuum (V)UV photons was assumed. Similar maximum inactivation results were achieved for the three feed gas compositions. The surface structure had a significant impact on the inactivation efficiency of the plasma treatment. The maximum inactivation achieved was between 2.4 and 2.8 log10 on glass petri-dishes and 3.9 to 4.6 log10 on glass beads. The treatment of peppercorns resulted in an inactivation lower than 1.0 log10. qPCR results showed a significant DNA damage for all gas compositions. Pure argon showed the highest results for the DNA damage ratio values, followed by argon + 0.135% vol. oxygen + 0.2% vol. nitrogen. In case of argon + 0.135% vol. oxygen the inactivation seems to be dominated by the action of ROS. These findings indicate the significant role of VUV and UV photons in the inactivation process of B. subtilis endospores.
  • Item
    Detailed analysis of metagenome datasets obtained from biogas-producing microbial communities residing in biogas reactors does not indicate the presence of putative pathogenic microorganisms
    (London : BioMed Central, 2013) Eikmeyer, Felix G.; Rademacher, Antje; Hanreich, Angelika; Hennig, Magdalena; Jaenicke, Sebastian; Maus, Irena; Wibberg, Daniel; Zakrzewski, Martha; Pühler, Alfred; Klocke, Michael; Schlüter, Andreas
    Background: In recent years biogas plants in Germany have been supposed to be involved in amplification and dissemination of pathogenic bacteria causing severe infections in humans and animals. In particular, biogas plants are discussed to contribute to the spreading of Escherichia coli infections in humans or chronic botulism in cattle caused by Clostridium botulinum. Metagenome datasets of microbial communities from an agricultural biogas plant as well as from anaerobic lab-scale digesters operating at different temperatures and conditions were analyzed for the presence of putative pathogenic bacteria and virulence determinants by various bioinformatic approaches. Results: All datasets featured a low abundance of reads that were taxonomically assigned to the genus Escherichia or further selected genera comprising pathogenic species. Higher numbers of reads were taxonomically assigned to the genus Clostridium. However, only very few sequences were predicted to originate from pathogenic clostridial species. Moreover, mapping of metagenome reads to complete genome sequences of selected pathogenic bacteria revealed that not the pathogenic species itself, but only species that are more or less related to pathogenic ones are present in the fermentation samples analyzed. Likewise, known virulence determinants could hardly be detected. Only a marginal number of reads showed similarity to sequences described in the Microbial Virulence Database MvirDB such as those encoding protein toxins, virulence proteins or antibiotic resistance determinants. Conclusions: Findings of this first study of metagenomic sequence reads of biogas producing microbial communities suggest that the risk of dissemination of pathogenic bacteria by application of digestates from biogas fermentations as fertilizers is low, because obtained results do not indicate the presence of putative pathogenic microorganisms in the samples analyzed.
  • Item
    Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates
    (London : BioMed Central, 2016) Maus, Irena; Koeck, Daniela E.; Cibis, Katharina G.; Hahnke, Sarah; Kim, Yong S.; Langer, Thomas; Kreube, Jana; Erhard, Marcel; Bremges, Andreas; Off, Sandra; Stolze, Ivonne; Jaenicke, Sebastian; Goesmann, Alexander; Sczyrba, Alexander; Scherer, Paul; König, Helmut; Schwarz, Wolfgang H.; Zverlov, Vladimir V.; Liebl, Wolfgang; Pühler, Alfred; Schlüter, Andreas; Klocke, Michael
    One of the most promising technologies to sustainably produce energy and to mitigate greenhouse gas emissions from combustion of fossil energy carriers is the anaerobic digestion and biomethanation of organic raw material and waste towards biogas by highly diverse microbial consortia. In this context, the microbial systems ecology of thermophilic industrial-scale biogas plants is poorly understood.
  • Item
    Microbial community dynamics in replicate anaerobic digesters exposed sequentially to increasing organic loading rate, acidosis, and process recovery
    (London : BioMed Central, 2015) Goux, Xavier; Calusinska, Magdalena; Lemaigre, Sébastien; Marynowska, Martyna; Klocke, Michael; Udelhoven, Thomas; Delfosse, Philippe
    Volatile fatty acid intoxication (acidosis), a common process failure recorded in anaerobic reactors, leads to drastic losses in methane production. Unfortunately, little is known about the microbial mechanisms underlining acidosis and the potential to recover the process. In this study, triplicate mesophilic anaerobic reactors of 100 L were exposed to acidosis resulting from an excessive feeding with sugar beet pulp and were compared to a steady-state reactor. Results Stable operational conditions at the beginning of the experiment initially led to similar microbial populations in the four reactors, as revealed by 16S rRNA gene T-RFLP and high-throughput amplicon sequencing. Bacteroidetes and Firmicutes were the two dominant phyla, and although they were represented by a high number of operational taxonomic units, only a few were dominant. Once the environment became deterministic (selective pressure from an increased substrate feeding), microbial populations started to diverge between the overfed reactors. Interestingly, most of bacteria and archaea showed redundant functional adaptation to the changing environmental conditions. However, the dominant Bacteroidales were resistant to high volatile fatty acids content and low pH. The severe acidosis did not eradicate archaea and a clear shift in archaeal populations from acetotrophic to hydrogenotrophic methanogenesis occurred in the overfed reactors. After 11 days of severe acidosis (pH 5.2 ± 0.4), the process was quickly recovered (restoration of the biogas production with methane content above 50 %) in the overfed reactors, by adjusting the pH to around 7 using NaOH and NaHCO3. Conclusions In this study we show that once the replicate reactors are confronted with sub-optimal conditions, their microbial populations start to evolve differentially. Furthermore the alterations of commonly used microbial parameters to monitor the process, such as richness, evenness and diversity indices were unsuccessful to predict the process failure. At the same time, we tentatively propose the replacement of the dominant Methanosaeta sp. in this case by Methanoculleus sp., to be a potential warning indicator of acidosis.