Search Results

Now showing 1 - 10 of 16
  • Item
    Global spatial regularity for time dependent elasto-plasticity and related problems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Knees, Dorothee
    We study the global spatial regularity of solutions of generalized elasto-plastic models with linear hardening on smooth domains. Under natural smoothness assumptions on the data and the boundary we obtain that the displacements belong to L^8((0,T);H^(3/2-d)(O)) whereas the internal variables belong to L^8((0,T);H^(1/2-d)(O)). The key step in the proof is a reflection argument which gives the regularity result in directions normal to the boundary on the basis of tangential regularity results
  • Item
    Analytical and numerical aspects of time-dependent models with internal variables
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Gruber, Peter; Knees, Dorothee; Nesenenko, Sergiy; Thomas, Marita
    In this paper some analytical and numerical aspects of time-dependent models with internal variables are discussed. The focus lies on elasto/visco-plastic models of monotone type arising in the theory of inelastic behavior of materials. This class of problems includes the classical models of elasto-plasticity with hardening and viscous models of the Norton-Hoff type. We discuss the existence theory for different models of monotone type, give an overview on spatial regularity results for solutions to such models and illustrate a numerical solution algorithm at an example. Finally, the relation to the energetic formulation for rate-independent processes is explained and temporal regularity results based on different convexity assumptions are presented
  • Item
    Derivation of an effective damage model with evolving micro-structure
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Hanke, Hauke; Knees, Dorothee
    In this paper rate-independent damage models for elastic materials are considered. The aim is the derivation of an effective damage model by investigating the limit process of damage models with evolving micro-defects. In all presented models the damage is modeled via a unidirectional change of the material tensor. With progressing time this tensor is only allowed to decrease in the sense of quadratic forms. The magnitude of the damage is given by comparing the actual material tensor with two reference configurations, denoting completely undamaged material and maximally damaged material (no complete damage). The starting point is a microscopic model, where the underlying micro-defects, describing the distribution of either undamaged material or maximally damaged material (but nothing in between), are of a given shape but of different time-dependent sizes. Scaling the micro-structure of this microscopic model by a parameter " > 0 the limit passage " ! 0 is preformed via two-scale convergence techniques. Therefore, a regularization approach for piecewise constant functions is introduced to guarantee enough regularity for identifying the limit model. In the limit model the material tensor depends on a damage variable z : [0, T ] ! W1,p( ) taking values between 0 and 1 such that, in contrast to the microscopic model, some kind of intermediate damage for a material point x 2 is possible. Moreover, this damage variable is connected to the material tensor via an explicit formula, namely, a unit cell formula known from classical homogenization results
  • Item
    Homogenization of elliptic systems with non-periodic, state dependent coefficients
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Hanke, Hauke; Knees, Dorothee
    In this paper, a homogenization problem for an elliptic system with non-periodic, state dependent coefficients representing microstructure is investigated. The state functions defining the tensor of coefficients are assumed to have an intrinsic length scale denoted by ε > 0. The aim is the derivation of an effective model by investigating the limit process ε → 0 of the state functions rigorously. The effective model is independent of the parameter ε > 0 but preserves the microscopic structure of the state functions (ε > 0), meaning that the effective tensor is given by a unit cell problem prescribed by a suitable microscopic tensor. Due to the non-periodic structure of the state functions and the corresponding microstructure, the effective tensor turns out to vary from point to point (in contrast to a periodic microscopic model). In a forthcoming paper, these states will be solutions of an additional evolution law describing changes of the microstructure. Such changes could be the consequences of temperature changes, phase separation or damage progression, for instance. Here, in addition to the above and as a preparation for an application to time-dependent damage models (discussed in a future paper), we provide a Γ-convergence result of sequences of functionals being related to the previous microscopic models with state dependent coefficients. This requires a penalization term for piecewise constant state functions that allows us to extract from bounded sequences those sequences converging to a Sobolev function in some sense. The construction of the penalization term is inspired by techniques for Discontinuous Galerkin methods and is of own interest. A compactness and a density result are provided.
  • Item
    A vanishing viscosity approach to a rate-independent damage model
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Knees, Dorothee; Rossi, Riccarda; Zanini, Chiara
    We analyze a rate-independent model for damage evolution in elastic bodies. The central quantities are a stored energy functional and a dissipation functional, which is assumed to be positively homogeneous of degree one. Since the energy is not simultaneously (strictly) convex in the damage variable and the displacements, solutions may have jumps as a function of time. The latter circumstance makes it necessary to recur to suitable notions of weak solution. However, the by-now classical concept of global energetic solution fails to describe accurately the behavior of the system at jumps. Hence, we consider rate-independent damage models as limits of systems driven by viscous, rate-dependent dissipation. We use a technique for taking the vanishing viscosity limit, which is based on arc-length reparameterization. In this way, in the limit we obtain a novel formulation for the rate-independent damage model, which highlights the interplay of viscous and rate-independent effects in the jump regime, and provides a better description of the energetic behavior of the system at jumps.
  • Item
    Crack growth in polyconvex materials
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Knees, Dorothee; Zanini, Chiara; Mielke, Alexander
    We discuss a model for crack propagation in an elastic body, where the crack path is described a-priori. In particular, we develop in the framework of finite-strain elasticity a rate-independent model for crack evolution which is based on the Griffith fracture criterion. Due to the nonuniqueness of minimizing deformations, the energy-release rate is no longer continuous with respect to time and the position of the crack tip. Thus, the model is formulated in terms of the Clarke differential of the energy, generalizing the classical crack evolution models for elasticity with strictly convex energies. We prove the existence of solutions for our model and also the existence of special solutions, where only certain extremal points of the Clarke differential are allowed.
  • Item
    A quasilinear differential inclusion for viscous and rate-independent damage systems in non-smooth domains
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Knees, Dorothee; Rossi, Riccarda; Zanini, Chiara
    This paper focuses on rate-independent damage in elastic bodies. Since the driving energy is nonconvex, solutions may have jumps as a function of time, and in this situation it is known that the classical concept of energetic solutions for rate-independent systems may fail to accurately describe the behavior of the system at jumps. Therefore, we resort to the (by now well-established) vanishing viscosity approach to rate-independent modeling and approximate the model by its viscous regularization. In fact, the analysis of the latter PDE system presents remarkable difficulties, due to its highly nonlinear character. We tackle it by combining a variational approach to a class of abstract doubly nonlinear evolution equations, with careful regularity estimates tailored to this specific system relying on a q-Laplacian type gradient regularization of the damage variable. Hence, for the viscous problem we conclude the existence of weak solutions satisfying a suitable energy-dissipation inequality that is the starting point for the vanishing viscosity analysis. The latter leads to the notion of (weak) parameterized solution to our rate-independent system, which encompasses the in uence of viscosity in the description of the jump regime.
  • Item
    Regularity of elastic fields in composites
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Knees, Dorothee; Sändig, Anna-Margarete
    It is well known that high stress concentrations can occur in elastic composites in particular due to the interaction of geometrical singularities like corners, edges and cracks and structural singularities like jumping material parameters. In the project C5 "Stress concentrations in heterogeneous materials" of the SFB 404 "Multifield Problems in Solid and Fluid Mechanics" it was mathematically analyzed where and which kind of stress singularities in coupled linear and nonlinear elastic structures occur. In the linear case asymptotic expansions near the geometrical and structural peculiarities are derived, formulae for generalized stress intensity factors included. In the nonlinear case such expansions are unknown in general and regularity results are proved for elastic materials with power-law constitutive equations with the help of the difference quotient technique combined with a quasi-monotone covering condition for the subdomains and the energy densities. Furthermore, some applications of the regularity results to shape and structure optimization and the Griffith fracture criterion in linear and nonlinear elastic structures are discussed. Numerical examples illustrate the results.
  • Item
    Computational aspects of quasi-static crack propagation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Knees, Dorothee; Schröder, Andreas
    The focus of this note lies on the numerical analysis of models describing the propagation of a single crack in a linearly elastic material. The evolution of the crack is modeled as a rate-independent process based on the Griffith criterion. We follow two different approaches for setting up mathematically well defined models: the global energetic approach and an approach based on a viscous regularization. We prove the convergence of solutions of fully discretized models (i.e. with respect to time and space) and derive relations between the discretization parameters (mesh size, time step size, viscosity parameter, crack increment) which guarantee the convergence of the schemes. Further, convergence rates are provided for the approximation of energy release rates by certain discrete energy release rates. Thereby we discuss both, models with self-contact conditions on the crack faces as well as models with pure Neumann conditions on the crack faces. The convergence proofs rely on regularity estimates for the elastic fields close to the crack tip and local and global finite element error estimates. Finally the theoretical results are illustrated with some numerical calculations.
  • Item
    Global spatial regularity for a regularized elasto-plastic model
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Bumb, Andreas; Knees, Dorothee
    In this note the spatial regularity of weak solutions for a class of elasto-viscoplastic evolution models is studied for nonsmooth domains. The considered class comprises e.g. models which are obtained through a Yosida regularization from classical, rate-independent models. The corresponding evolution model consists of an elliptic PDE for the (generalized) displacements which is coupled with an ordinary differential equation with a Lipschitz continuous nonlinearity describing the evolution of the internal variable. It is shown that the global spatial regularity of the displacements and the inner variables is exactly determined through the mapping properties of the underlying elliptic operator.