Search Results

Now showing 1 - 2 of 2
  • Item
    Effects of the Lake Sobradinho Reservoir (Northeastern Brazil) on the Regional Climate
    (Basel : MDPI, 2017) Ekhtiari, Nikoo; Grossman-Clarke, Susanne; Koch, Hagen; de Souza, Werônica Meira; Donner, Reik V.; Volkholz, Jan
    This study investigates the effects of Lake Sobradinho, a large reservoir in Northeastern Brazil, on the local near-surface atmospheric and boundary layer conditions. For this purpose, simulations with the regional climate model COSMO-CLM are compared for two different scenarios: (1) with the lake being replaced by the average normal native vegetation cover and (2) with the lake as it exists today, for two different two-month periods reflecting average and very dry conditions, respectively. The performance of the simulation is evaluated against data from surface meteorological stations as well as satellite data in order to ensure the model’s ability to capture atmospheric conditions in the vicinity of Lake Sobradinho. The obtained results demonstrate that the lake affects the near-surface air temperature of the surrounding area as well as its humidity and wind patterns. Specifically, Lake Sobradinho cools down the air during the day and warms it up during the night by up to several ∘ C depending on the large-scale meteorological conditions. Moreover, the humidity is significantly increased as a result of the lake’s presence and causes a lake breeze. The observed effects on humidity and air temperature also extend over areas relatively far away from the lake.
  • Item
    Management scenarios of the Grand Ethiopian Renaissance Dam and their impacts under recent and future climates
    (Basel : MDPI, 2017) Liersch, Stefan; Koch, Hagen; Hattermann, Fred Fokko
    Close to the border with Sudan, Ethiopia is currently building the largest hydroelectric power plant in Africa with a storage volume corresponding to approximately 1.5 years of the mean discharges of the Blue Nile. This endeavor is controversially debated in the public and the scientific literature. Contributing to this discussion, by shading some light on climate change issues, an eco-hydrological model, equipped with a reservoir module, was applied to investigate downstream hydrological impacts during filling and regular operation, the latter considering climate change projected by an ensemble of 10 global and regional climate models. Our results show that at the earliest after 20 months, the dam could produce hydroelectric power. Full supply level may be reached after four years or not at all, depending on filling policies and assumptions of seepage rates. Under recent hydro-climatic conditions, the dam may produce 13 TWh −a , which is below the envisaged target of 15.7 TWh −a . The ensemble mean suggests slightly increasing hydropower production in the future. Almost independently of the operation rules, the highly variable discharge regime will be significantly altered to a regime with almost equal flows each month. Achieving a win-win situation for all riparian countries requires a high level of cooperation in managing the Eastern Nile water resources.