Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Water resources planning in the Upper Niger River basin: Are there gaps between water demand and supply?

2019, Liersch, Stefan, Fournet, Samuel, Koch, Hagen, Djibo, Abdouramane Gado, Reinhardt, Julia, Kortlandt, Joyce, Van Weert, Frank, Seidou, Ousmane, Klop, Erik, Baker, Chris, Hattermann, Fred F.

Study region: The Upper Niger and Bani River basins in West Africa. Study focus: The growing demand for food, water, and energy led Mali and Guinea to develop ambitious hydropower and irrigation plans, including the construction of a new dam and the extension of irrigation schemes. These two developments will take place upstream of sensible ecosystem hotspots while the feasibility of development plans in terms of water availability and sustainability is questionable. Where agricultural development in past decades focused mainly on intensifying dry-season crops cultivation, future plans include extension in both the dry and wet seasons. New hydrological insights for the region: Today's irrigation demand corresponds to 7% of the average annual Niger discharge and could account to one third in 2045. An extension of irrigated agriculture is possible in the wet season, while extending dry-season cropping would be largely compromised with the one major existing Sélingué dam. An additional large Fomi or Moussako dam would not completely satisfy dry-season irrigation demands in the 2045 scenario but would reduce the estimated supply gap from 36% to 14%. However, discharge peaks may decrease by 40% reducing the inundated area in the Inner Niger Delta by 21%, while average annual discharge decreases by 30%. Sustainable development should therefore consider investments in water-saving irrigation and management practices to enhance the feasibility of the envisaged irrigation plans instead of completely relying on the construction of a flow regime altering dam. © 2019 The Authors

Loading...
Thumbnail Image
Item

Effects of the Lake Sobradinho Reservoir (Northeastern Brazil) on the Regional Climate

2017, Ekhtiari, Nikoo, Grossman-Clarke, Susanne, Koch, Hagen, de Souza, Werônica Meira, Donner, Reik V., Volkholz, Jan

This study investigates the effects of Lake Sobradinho, a large reservoir in Northeastern Brazil, on the local near-surface atmospheric and boundary layer conditions. For this purpose, simulations with the regional climate model COSMO-CLM are compared for two different scenarios: (1) with the lake being replaced by the average normal native vegetation cover and (2) with the lake as it exists today, for two different two-month periods reflecting average and very dry conditions, respectively. The performance of the simulation is evaluated against data from surface meteorological stations as well as satellite data in order to ensure the model’s ability to capture atmospheric conditions in the vicinity of Lake Sobradinho. The obtained results demonstrate that the lake affects the near-surface air temperature of the surrounding area as well as its humidity and wind patterns. Specifically, Lake Sobradinho cools down the air during the day and warms it up during the night by up to several ∘ C depending on the large-scale meteorological conditions. Moreover, the humidity is significantly increased as a result of the lake’s presence and causes a lake breeze. The observed effects on humidity and air temperature also extend over areas relatively far away from the lake.

Loading...
Thumbnail Image
Item

Effects of model calibration on hydrological and water resources management simulations under climate change in a semi-arid watershed

2020, Koch, Hagen, Silva, Ana Lígia Chaves, Liersch, Stefan, de Azevedo, José Roberto Gonçalves, Hattermann, Fred Fokko

Semi-arid regions are known for erratic precipitation patterns with significant effects on the hydrological cycle and water resources availability. High temporal and spatial variation in precipitation causes large variability in runoff over short durations. Due to low soil water storage capacity, base flow is often missing and rivers fall dry for long periods. Because of its climatic characteristics, the semi-arid north-eastern region of Brazil is prone to droughts. To counter these, reservoirs were built to ensure water supply during dry months. This paper describes problems and solutions when calibrating and validating the eco-hydrological model SWIM for semi-arid regions on the example of the Pajeú watershed in north-eastern Brazil. The model was calibrated to river discharge data before the year 1983, with no or little effects of water management, applying a simple and an enhanced approach. Uncertainties result mainly from the meteorological data and observed river discharges. After model calibration water management was included in the simulations. Observed and simulated reservoir volumes and river discharges are compared. The calibrated and validated models were used to simulate the impacts of climate change on hydrological processes and water resources management using data of two representative concentration pathways (RCP) and five earth system models (ESM). The differences in changes in natural and managed mean discharges are negligible (< 5%) under RCP8.5 but notable (> 5%) under RCP2.6 for the ESM ensemble mean. In semi-arid catchments, the enhanced approach should be preferred, because in addition to discharge, a second variable, here evapotranspiration, is considered for model validation. © 2020, The Author(s).

Loading...
Thumbnail Image
Item

Management scenarios of the Grand Ethiopian Renaissance Dam and their impacts under recent and future climates

2017, Liersch, Stefan, Koch, Hagen, Hattermann, Fred Fokko

Close to the border with Sudan, Ethiopia is currently building the largest hydroelectric power plant in Africa with a storage volume corresponding to approximately 1.5 years of the mean discharges of the Blue Nile. This endeavor is controversially debated in the public and the scientific literature. Contributing to this discussion, by shading some light on climate change issues, an eco-hydrological model, equipped with a reservoir module, was applied to investigate downstream hydrological impacts during filling and regular operation, the latter considering climate change projected by an ensemble of 10 global and regional climate models. Our results show that at the earliest after 20 months, the dam could produce hydroelectric power. Full supply level may be reached after four years or not at all, depending on filling policies and assumptions of seepage rates. Under recent hydro-climatic conditions, the dam may produce 13 TWh −a , which is below the envisaged target of 15.7 TWh −a . The ensemble mean suggests slightly increasing hydropower production in the future. Almost independently of the operation rules, the highly variable discharge regime will be significantly altered to a regime with almost equal flows each month. Achieving a win-win situation for all riparian countries requires a high level of cooperation in managing the Eastern Nile water resources.

Loading...
Thumbnail Image
Item

A new approach for assessing synergies of solar and wind power: implications for West Africa

2018, Sterl, Sebastian, Liersch, Stefan, Koch, Hagen, Lipzig, Nicole P M van, Thiery, Wim

West African countries' energy and climate policies show a pronounced focus on decarbonising power supply through renewable electricity (RE) generation. In particular, most West African states explicitly focus on hybrid mixes of variable renewable power sources—solar, wind and hydropower—in their targets for the electricity sector. Hydropower, the main current RE resource in West Africa, is strongly sensitive to monsoon rainfall variability, which has led to power crises in the past. Therefore, solar and wind power could play a stronger role in the future as countries move to power systems with high shares of RE. Considering the policy focus on diversified RE portfolios, there is a strong need to provide climate services for assessing how these resources could function together in a power mix. In this study, climate data from the state-of-the-art ERA5 reanalysis is used to assess the synergies of solar photovoltaic (PV) and wind power potential in West Africa at hourly resolution. A new metric, the stability coefficient Cstab, is developed to quantify the synergies of solar PV and wind power for achieving a balanced power output and limiting storage needs. Using this metric, it is demonstrated that there is potential for exploiting hybrid solar/wind power in a larger area of West Africa, covering more important centers of population and closer to existing grid structures, than would be suggested by average maps of solar and wind resource availability or capacity factor for the region. The results of this study highlight why multi-scale temporal synergies of power mixes should be considered in RE system planning from the start.