Search Results

Now showing 1 - 5 of 5
  • Item
    Targeting extracellular lectins of Pseudomonas aeruginosa with glycomimetic liposomes
    (London [u.a.] : RSC, 2021) Metelkina, Olga; Huck, Benedikt; O'Connor, Jonathan S.; Koch, Marcus; Manz, Andreas; Lehr, Claus-Michael; Titz, Alexander
    The antimicrobial resistance crisis requires novel approaches for the therapy of infections especially with Gram-negative pathogens. Pseudomonas aeruginosa is defined as priority 1 pathogen by the WHO and thus of particular interest. Its drug resistance is primarily associated with biofilm formation and essential constituents of its extracellular biofilm matrix are the two lectins, LecA and LecB. Here, we report microbial lectin-specific targeted nanovehicles based on liposomes. LecA- and LecB-targeted phospholipids were synthesized and used for the preparation of liposomes. These liposomes with varying surface ligand density were then analyzed for their competitive and direct lectin binding activity. We have further developed a microfluidic device that allowed the optical detection of the targeting process to the bacterial lectins. Our data showed that the targeted liposomes are specifically binding to their respective lectin and remain firmly attached to surfaces containing these lectins. This synthetic and biophysical study provides the basis for future application in targeted antibiotic delivery to overcome antimicrobial resistance.
  • Item
    Optical detection of di- and triphosphate anions with mixed monolayer-protected gold nanoparticles containing zinc(II)–dipicolylamine complexes
    (Frankfurt, Main : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2020) Reinke, Lena; Bartl, Julia; Koch, Marcus; Kubik, Stefan
    Gold nanoparticles covered with a mixture of ligands of which one type contains solubilizing triethylene glycol residues and the other peripheral zinc(II)–dipicolylamine (DPA) complexes allowed the optical detection of hydrogenphosphate, diphosphate, and triphosphate anions in water/methanol 1:2 (v/v). These anions caused the bright red solutions of the nanoparticles to change their color because of nanoparticle aggregation followed by precipitation, whereas halides or oxoanions such as sulfate, nitrate, or carbonate produced no effect. The sensitivity of phosphate sensing depended on the nature of the anion, with diphosphate and triphosphate inducing visual changes at significantly lower concentrations than hydrogenphosphate. In addition, the sensing sensitivity was also affected by the ratio of the ligands on the nanoparticle surface, decreasing as the number of immobilized zinc(II)–dipicolylamine groups increased. A nanoparticle containing a 9:1 ratio of the solubilizing and the anion-binding ligand showed a color change at diphosphate and triphosphate concentrations as low as 10 μmol/L, for example, and precipitated at slightly higher concentrations. Hydrogenphosphate induced a nanoparticle precipitation only at a concentration of ca. 400 μmol/L, at which the precipitates formed in the presence of diphosphates and triphosphates redissolved. A nanoparticle containing fewer binding sites was more sensitive, while increasing the relative number of zinc(II)–dipicolylamine complexes beyond 25% had a negative impact on the limit of detection and the optical response. Transmission electron microscopy provided evidence that the changes of the nanoparticle properties observed in the presence of the phosphates were due to a nanoparticle crosslinking, consistent with the preferred binding mode of zinc(II)–dipicolylamine complexes with phosphate anions which involves binding of the anion between two metal centers. This work thus provided information on how the behavior of mixed monolayer-protected gold nanoparticles is affected by multivalent interactions, at the same time introducing a method to assess whether certain biologically relevant anions are present in an aqueous solution within a specific concentration range.
  • Item
    Crystalline Carbosilane-Based Block Copolymers: Synthesis by Anionic Polymerization and Morphology Evaluation in the Bulk State
    (Weinheim : Wiley-VCH, 2022) Hübner, Hanna; Niebuur, Bart‐Jan; Janka, Oliver; Gemmer, Lea; Koch, Marcus; Kraus, Tobias; Kickelbick, Guido; Stühn, Bernd; Gallei, Markus
    Block copolymers (BCPs) in the bulk state are known to self-assemble into different morphologies depending on their polymer segment ratio. For polymers with amorphous and crystalline BCP segments, the crystallization process can be influenced significantly by the corresponding bulk morphology. Herein, the synthesis of the amorphous-crystalline BCP poly(dimethyl silacyclobutane)-block-poly(2vinyl pyridine), (PDMSB-b-P2VP), by living anionic polymerization is reported. Polymers with overall molar masses ranging from 17 400 g to 592 200 g mol−1 and PDMSB contents of 4.8–83.9 vol% are synthesized and characterized by size-exclusion chromatography and NMR spectroscopy. The bulk morphology of the obtained polymers is investigated by means of transmission electron microscopy and small angle X-ray scattering, revealing a plethora of self-assembled structures, providing confined and nonconfined conditions. Subsequently, the influence of the previously determined morphologies and their resulting confinement on the crystallinity and crystallization behavior of PDMSB is analyzed via differential scanning calorimetry and powder X-ray diffraction. Here, fractionated crystallization and supercooling effects are observable as well as different diffraction patterns of the PDMSB crystallites for confined and nonconfined domains.
  • Item
    Synthesis and Biopharmaceutical Characterization of Amphiphilic Squalenyl Derivative Based Versatile Drug Delivery Platform
    (Lausanne : Frontiers Media, 2020) Ho, Duy-Khiet; Christmann, Rebekka; Murgia, Xabier; De Rossi, Chiara; Frisch, Sarah; Koch, Marcus; Schaefer, Ulrich F.; Loretz, Brigitta; Desmaele, Didier; Couvreur, Patrick; Lehr, Claus-Michael
    Limited drug loading capacity (LC), mostly below 5% w/w, is a significant drawback of nanoparticulate drug delivery systems (DDS). Squalenoylation technology, which employs bioconjugation of squalenyl moiety and drug, allows self-assemble of nanoparticles (NPs) in aqueous media with significantly high LC (>30% w/w). The synthesis and particle preparation of squalenoylated prodrugs are, however, not facile for molecules with multiple reactive groups. Taking a different approach, we describe the synthesis of amphiphilic squalenyl derivatives (SqDs) as well as the physicochemical and biopharmaceutical characterizations of their self-assembled NPs as DDSs. The SqDs included in this study are (i) cationic squalenyl diethanolamine (ii) PEGylated SqD (PEG 750 Da), (iii) PEGylated SqD (PEG 3,000 Da), and (iv) anionic squalenyl hydrogen sulfate. All four SqDs self-assemble into NPs in a size range from 100 to 200 nm in an aqueous solution. Furthermore, all NP derivatives demonstrate appropriate biocompatibility and adequate colloidal stability in physiological relevant pH environments. The mucoprotein binding of PEGylated NPs is reduced compared to the charged NPs. Most importantly, this technology allows excellent LC (at maximum of 45% w/w) of a wide range of multifunctional compounds, varying in physicochemical properties and molecular weight. Interestingly, the drug release profile can be tuned by different loading methods. In summary, the SqD-based NPs appear as versatile drug delivery platforms.
  • Item
    One-Pot Synthesis of Copper Iodide-Polypyrrole Nanocomposites
    (Basel : MDPI, 2021) Konakov, Artem O.; Dremova, Nadejda N.; Khodos, Igor I.; Koch, Marcus; Zolotukhina, Ekaterina V.; Silina, Yuliya
    A novel one-pot chemical synthesis of functional copper iodide-polypyrrole composites, CuI-PPy, has been proposed. The fabrication process allows the formation of nanodimensional metal salt/polymer hybrid structures in a fully controlled time- and concentration-dependent manner. The impact of certain experimental conditions, viz., duration of synthesis, sequence of component addition and concentrations of the intact reagents on the structure, dimensionality and yield of the end-product was evaluated in detail. More specifically, the amount of marshite CuI within the hybrid composite can be ranged from 60 to 90 wt.%, depending on synthetic conditions (type and concentration of components, process duration). In addition, the conditions allowing the synthesis of nano-sized CuI distributed inside the polypyrrole matrix were found. A high morphological stability and reproducibility of the synthesized nanodimensional metal-polymer hybrid materials were approved. Finally, the electrochemical activity of the formed composites was verified by cyclic voltammetry studies. The stability of CuI-PPy composite deposited on the electrodes was strongly affected by the applied anodic limit. The proposed one-pot synthesis of the hybrid nanodimensional copper iodide-polypyrrole composites is highly innovative, meets the requirements of Green Chemistry and is potentially useful for future biosensor development. In addition, this study is expected to generally contribute to the knowledge on the hybrid nano-based composites with tailored properties.