Search Results

Now showing 1 - 2 of 2
  • Item
    Impact of mucus modulation by N-acetylcysteine on nanoparticle toxicity
    (Amsterdam : Elsevier, 2023) Meziu, Enkeleda; Shehu, Kristela; Koch, Marcus; Schneider, Marc; Kraegeloh, Annette
    Human respiratory mucus is a biological hydrogel that forms a protective barrier for the underlying epithelium. Modulation of the mucus layer has been employed as a strategy to enhance transmucosal drug carrier transport. However, a drawback of this strategy is a potential reduction of the mucus barrier properties, in particular in situations with an increased exposure to particles. In this study, we investigated the impact of mucus modulation on its protective role. In vitro mucus was produced by Calu-3 cells, cultivated at the air-liquid interface for 21 days and used for further testing as formed on top of the cells. Analysis of confocal 3D imaging data revealed that after 21 days Calu-3 cells secrete a mucus layer with a thickness of 24 ± 6 μm. Mucus appeared to restrict penetration of 500 nm carboxyl-modified polystyrene particles to the upper 5–10 μm of the layer. Furthermore, a mucus modulation protocol using aerosolized N-acetylcysteine (NAC) was developed. This treatment enhanced the penetration of particles through the mucus down to deeper layers by means of the mucolytic action of NAC. These findings were supported by cytotoxicity data, indicating that intact mucus protects the underlying epithelium from particle-induced effects on membrane integrity. The impact of NAC treatment on the protective properties of mucus was probed by using 50 and 100 nm amine-modified and 50 nm carboxyl-modified polystyrene nanoparticles, respectively. Cytotoxicity was only induced by the amine-modified particles in combination with NAC treatment, implying a reduced protective function of modulated mucus. Overall, our data emphasize the importance of integrating an assessment of the protective function of mucus into the development of therapy approaches involving mucus modulation.
  • Item
    Pre and post-treatments to improve weldability and mechanical properties of aluminum-polyamide laser welded specimens
    (Amsterdam : Elsevier, 2020) Elahi, Mahdi Amne; Koch, Marcus; Heck, Mike; Plapper, Peter
    The laser polishing surface treatment is a prerequisite for enhanced weldability that is enabled by superior adhesion between the weldments. The paper describes the laser polishing process of the aluminum surface to develop a relatively thick and porous artificial aluminum oxide layer. Microscopic observation shows the laser polishing process significantly improves the adhesion of molten polyamide to the aluminum surface. Besides, the shear load of the pretreated joints is much higher than that of as-received ones. However, for the majority of the welded samples, the failure happens at the polyamide near the interface of aluminum/polyamide due to the thermal effect and structural changes of polyamide during the welding process. By applying the post-treatment of the welded specimens with different cycles, the mentioned failure mechanism is not observed anymore. Therefore, the mechanical properties of the joint will be improved and reach to the limits of the base materials.