Search Results

Now showing 1 - 2 of 2
  • Item
    A Unified Research Data Infrastructure for Catalysis Research – Challenges and Concepts
    (Weinheim : Wiley-VCH, 2021) Wulf, Christoph; Beller, Matthias; Boenisch, Thomas; Deutschmann, Olaf; Hanf, Schirin; Kockmann, Norbert; Kraehnert, Ralph; Oezaslan, Mehtap; Palkovits, Stefan; Schimmler, Sonja; Schunk, Stephan A.; Wagemann, Kurt; Linke, David
    Modern research methods produce large amounts of scientifically valuable data. Tools to process and analyze such data have advanced rapidly. Yet, access to large amounts of high-quality data remains limited in many fields, including catalysis research. Implementing the concept of FAIR data (Findable, Accessible, Interoperable, Reusable) in the catalysis community would improve this situation dramatically. The German NFDI initiative (National Research Data Infrastructure) aims to create a unique research data infrastructure covering all scientific disciplines. One of the consortia, NFDI4Cat, proposes a concept that serves all aspects and fields of catalysis research. We present a perspective on the challenging path ahead. Starting out from the current state, research needs are identified. A vision for a integrating all research data along the catalysis value chain, from molecule to chemical process, is developed. Respective core development topics are discussed, including ontologies, metadata, required infrastructure, IP, and the embedding into research community. This Concept paper aims to inspire not only researchers in the catalysis field, but to spark similar efforts also in other disciplines and on an international level. © 2021 The Authors. ChemCatChem published by Wiley-VCH GmbH
  • Item
    Text-to-Ontology Mapping via Natural Language Processing with Application to Search for Relevant Ontologies in Catalysis †
    (Basel : MDPI, 2023) Korel, Lukáš; Yorsh, Uladzislau; Behr, Alexander S.; Kockmann, Norbert; Holeňa, Martin
    The paper presents a machine-learning based approach to text-to-ontology mapping. We explore a possibility of matching texts to the relevant ontologies using a combination of artificial neural networks and classifiers. Ontologies are formal specifications of the shared conceptualizations of application domains. While describing the same domain, different ontologies might be created by different domain experts. To enhance the reasoning and data handling of concepts in scientific papers, finding the best fitting ontology regarding description of the concepts contained in a text corpus. The approach presented in this work attempts to solve this by selection of a representative text paragraph from a set of scientific papers, which are used as data set. Then, using a pre-trained and fine-tuned Transformer, the paragraph is embedded into a vector space. Finally, the embedded vector becomes classified with respect to its relevance regarding a selected target ontology. To construct representative embeddings, we experiment with different training pipelines for natural language processing models. Those embeddings in turn are later used in the task of matching text to ontology. Finally, the result is assessed by compressing and visualizing the latent space and exploring the mappings between text fragments from a database and the set of chosen ontologies. To confirm the differences in behavior of the proposed ontology mapper models, we test five statistical hypotheses about their relative performance on ontology classification. To categorize the output from the Transformer, different classifiers are considered. These classifiers are, in detail, the Support Vector Machine (SVM), k-Nearest Neighbor, Gaussian Process, Random Forest, and Multilayer Perceptron. Application of these classifiers in a domain of scientific texts concerning catalysis research and respective ontologies, the suitability of the classifiers is evaluated, where the best result was achieved by the SVM classifier.