Search Results

Now showing 1 - 3 of 3
  • Item
    A High-Voltage, Dendrite-Free, and Durable Zn–Graphite Battery
    (Weinheim : Wiley-VCH, 2019) Wang, Gang; Kohn, Benjamin; Scheler, Ulrich; Wang, Faxing; Oswald, Steffen; Löffler, Markus; Tan, Deming; Zhang, Panpan; Zhang, Jian; Feng, Xinliang
    The intrinsic advantages of metallic Zn, like high theoretical capacity (820 mAh g−1), high abundance, low toxicity, and high safety have driven the recent booming development of rechargeable Zn batteries. However, the lack of high-voltage electrolyte and cathode materials restricts the cell voltage mostly to below 2 V. Moreover, dendrite formation and the poor rechargeability of the Zn anode hinder the long-term operation of Zn batteries. Here a high-voltage and durable Zn–graphite battery, which is enabled by a LiPF6-containing hybrid electrolyte, is reported. The presence of LiPF6 efficiently suppresses the anodic oxidation of Zn electrolyte and leads to a super-wide electrochemical stability window of 4 V (vs Zn/Zn2+). Both dendrite-free Zn plating/stripping and reversible dual-anion intercalation into the graphite cathode are realized in the hybrid electrolyte. The resultant Zn–graphite battery performs stably at a high voltage of 2.8 V with a record midpoint discharge voltage of 2.2 V. After 2000 cycles at a high charge–discharge rate, high capacity retention of 97.5% is achieved with ≈100% Coulombic efficiency. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • Item
    Waterborne phenolic, triazine-based porous polymer particles for the removal of toxic metal ions
    (Amsterdam : Elsevier, 2022) Borchert, Konstantin B.L.; Frenzel, Robert; Gerlach, Niklas; Reis, Berthold; Steinbach, Christine; Kohn, Benjamin; Scheler, Ulrich; Schwarz, Simona; Schwarz, Dana
    Highly functional and also highly porous materials are presenting great advantages for applications in energy storage, catalysis and separation processes, which is why a continuous development of new materials can be seen. To create a material combining the promising potential interactions of triazine groups with the electrostatic or hydrogen bonding interactions of phenolic groups, a completely new polymeric resin was synthesized. From an eco-friendly dispersion polymerization in water, a copolymer network was obtained, which includes nine hydroxyl groups and one s-triazine ring per repetition unit. The polymer forms highly porous particles with specific surface areas up to 531 ​m2/g and a negative streaming potential over a great pH range. The adsorption isotherms of Ni2+, Cd2+, and Pb2+ were studied in more detail achieving very good adsorption capacities (16 mg Ni2+/g, 24 mg Cd2+/g, and 90 mg Pb2+/g). Demonstrating excellent properties for adsorption applications. The adsorbent exhibited selectivity for the adsorption of Pb2+ over more commonly occurring but non-toxic metal ions such as Fe2+, Ca2+, Mg2+, and K+. Furthermore, reusability of the material was demonstrated by facile, quantitative desorption of adsorbed Pb2+ with a small amount of diluted HCl, circumventing organic chelators. Subsequently, adsorption was carried out without decrease in adsorption performance.
  • Item
    Polymer Chain Mobility under Shear—A Rheo-NMR Investigation
    (Basel : MDPI, 2018) Wiesner, Brigitte; Kohn, Benjamin; Mende, Mandy; Scheler, Ulrich
    The local dynamics in polymer melts and the impact of external shear in a Couette geometry have been investigated using rheological nuclear magnetic resonance (NMR). The spin-spin relaxation time, T2, which is sensitive to chain-segment motion, has been measured as a function of shear rate for two samples of poly(dimethylsiloxane). For the low-molecular-weight sample, a mono-exponential decay is observed, which becomes slightly faster with shear, indicating restrictions of the polymer chain motion. For the high-weight sample, a much faster bi-exponential decay is observed, indicative of entanglements. Both components in this decay become longer with shear. This implies that the free polymer segments between entanglements become effectively longer as a result of shear.