Search Results

Now showing 1 - 2 of 2
  • Item
    Phase Diagram of a Strained Ferroelectric Nanowire
    (Basel : MDPI, 2022) Pavlenko, Maksim A.; Di Rino, Franco; Boron, Leo; Kondovych, Svitlana; Sené, Anaïs; Tikhonov, Yuri A.; Razumnaya, Anna G.; Vinokur, Valerii M.; Sepliarsky, Marcelo; Lukyanchuk, Igor A.
    Ferroelectric materials manifest unique dielectric, ferroelastic, and piezoelectric properties. A targeted design of ferroelectrics at the nanoscale is not only of fundamental appeal but holds the highest potential for applications. Compared to two-dimensional nanostructures such as thin films and superlattices, one-dimensional ferroelectric nanowires are investigated to a much lesser extent. Here, we reveal a variety of the topological polarization states, particularly the vortex and helical chiral phases, in loaded ferroelectric nanowires, which enable us to complete the strain–temperature phase diagram of the one-dimensional ferroelectrics. These phases are of prime importance for optoelectronics and quantum communication technologies
  • Item
    Vortex states in a PbTiO3 ferroelectric cylinder
    (Amsterdam : SciPost Foundation, 2023) Kondovych, Svitlana; Pavlenko, Maksim; Tikhonov, Yurii; Razumnaya, Anna; Lukyanchuk, Igor
    The past decade's discovery of topological excitations in nanoscale ferroelectrics has turned the prevailing view that the polar ground state in these materials is uniform. However, the systematic understanding of the topological polar structures in ferroelectrics is still on track. Here we study stable vortex-like textures of polarization in the nanocylinders of ferroelectric PbTiO3, arising due to the competition of the elastic and electrostatic interactions. Using the phase-field numerical modeling and analytical calculations, we show that the orientation of the vortex core with respect to the cylinder axis is tuned by the geometrical parameters and temperature of the system.