Search Results

Now showing 1 - 10 of 19
  • Item
    Operation mechanism of high performance organic permeable base transistors with an insulated and perforated base electrode
    (Melville, NY : American Inst. of Physics, 2016) Kaschura, Felix; Fischer, Axel; Klinger, Markus P.; Doan, Duy Hai; Koprucki, Thomas; Glitzky, Annegret; Kasemann, Daniel; Widmer, Johannes; Leo, Karl
    The organic permeable base transistor is a vertical transistor architecture that enables high performance while maintaining a simple low-resolution fabrication. It has been argued that the charge transport through the nano-sized openings of the central base electrode limits the performance. Here, we demonstrate by using 3D drift-diffusion simulations that this is not the case in the relevant operation range. At low current densities, the applied base potential controls the number of charges that can pass through an opening and the opening is the current limiting factor. However, at higher current densities, charges accumulate within the openings and in front of the base insulation, allowing for an efficient lateral transport of charges towards the next opening. The on-state in the current-voltage characteristics reaches the maximum possible current given by space charge limited current transport through the intrinsic semiconductor layers. Thus, even a small effective area of the openings can drive huge current densities, and further device optimization has to focus on reducing the intrinsic layer thickness to a minimum.
  • Item
    Efficient Current Injection Into Single Quantum Dots Through Oxide-Confined p-n-Diodes
    (New York, NY : IEEE, 2016) Kantner, Markus; Bandelow, Uwe; Koprucki, Thomas; Schulze, Jan-Hindrik; Strittmatter, Andre; Wunsche, Hans-Jurgen
    Current injection into single quantum dots embedded in vertical p-n-diodes featuring oxide apertures is analyzed in the low-injection regime suitable for single-photon emitters. The experimental and theoretical evidence is found for a rapid lateral spreading of the carriers after passing the oxide aperture in the conventional p-i-n-design. By an alternative design employing p-doping up to the oxide aperture, the current spreading can be suppressed resulting in an enhanced current confinement and increased injection efficiencies, both, in the continuous wave and under pulsed excitation.
  • Item
    Mathematical models: A research data category?
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Koprucki, Thomas; Tabelow, Karsten
    Mathematical modeling and simulation (MMS) has now been established as an essential part of the scientific work in many disciplines and application areas. It is common to categorize the involved numerical data and to some extend the corresponding scientific software as research data. Both have their origin in mathematical models. In this contribution we propose a holistic approach to research data in MMS by including the mathematical models and discuss the initial requirements for a conceptual data model for this field.
  • Item
    3D electrothermal simulations of organic LEDs showing negative differential resistance
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Liero, Matthias; Fuhrmann, Jürgen; Glitzky, Annegret; Koprucki, Thomas; Fischer, Axel; Reineke, Sebastian
    Organic semiconductor devices show a pronounced interplay between temperature-activated conductivity and self-heating which in particular causes inhomogeneities in the brightness of large-area OLEDs at high power. We consider a 3D thermistor model based on partial differential equations for the electrothermal behavior of organic devices and introduce an extension to multiple layers with nonlinear conductivity laws, which also take the diode-like behavior in recombination zones into account. We present a numerical simulation study for a red OLED using a finite-volume approximation of this model. The appearance of S-shaped current-voltage characteristics with regions of negative differential resistance in a measured device can be quantitatively reproduced. Furthermore, this simulation study reveals a propagation of spatial zones of negative differential resistance in the electron and hole transport layers toward the contact.
  • Item
    Reproducible research through persistently linked and visualized data
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Drees, Bastian; Kraft, Angelina; Koprucki, Thomas
    The demand of reproducible results in the numerical simulation of opto-electronic devices or more general in mathematical modeling and simulation requires the (long-term) accessibility of data and software that were used to generate those results. Moreover, to present those results in a comprehensible manner data visualizations such as videos are useful. Persistent identifier can be used to ensure the permanent connection of these different digital objects thereby preserving all information in the right context. Here we give an overview over the state-of-the art of data preservation, data and software citation and illustrate the benefits and opportunities of enhancing publications with visual simulation data by showing a use case from opto-electronics.
  • Item
    p-Laplace thermistor modeling of electrothermal feedback in organic semiconductors
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Liero, Matthias; Koprucki, Thomas; Fischer, Axel; Scholz, Reinhard; Glitzky, Annegret
    In large-area Organic Light-Emitting Diodes (OLEDs) spatially inhomogeneous luminance at high power due to inhomogeneous current flow and electrothermal feedback can be observed. To describe these self-heating effects in organic semiconductors we present a stationary thermistor model based on the heat equation for the temperature coupled to a p-Laplace-type equation for the electrostatic potential with mixed boundary conditions. The p-Laplacian describes the non-Ohmic electrical behavior of the organic material. Moreover, an Arrhenius-like temperature dependency of the electrical conductivity is considered. We introduce a finite-volume scheme for the system and discuss its relation to recent network models for OLEDs. In two spatial dimensions we derive a priori estimates for the temperature and the electrostatic potential and prove the existence of a weak solution by Schauder's fixed point theorem.
  • Item
    Multi-dimensional modeling and simulation of semiconductor nanophotonic devices
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Kantner, Markus; Höhne, Theresa; Koprucki, Thomas; Burger, Sven; Wünsche, Hans-Jürgen; Schmidt, Frank; Mielke, Alexander; Bandelow, Uwe
    Self-consistent modeling and multi-dimensional simulation of semiconductor nanophotonic devices is an important tool in the development of future integrated light sources and quantum devices. Simulations can guide important technological decisions by revealing performance bottlenecks in new device concepts, contribute to their understanding and help to theoretically explore their optimization potential. The efficient implementation of multi-dimensional numerical simulations for computer-aided design tasks requires sophisticated numerical methods and modeling techniques. We review recent advances in device-scale modeling of quantum dot based single-photon sources and laser diodes by self-consistently coupling the optical Maxwell equations with semiclassical carrier transport models using semi-classical and fully quantum mechanical descriptions of the optically active region, respectively. For the simulation of realistic devices with complex, multi-dimensional geometries, we have developed a novel hp-adaptive finite element approach for the optical Maxwell equations, using mixed meshes adapted to the multi-scale properties of the photonic structures. For electrically driven devices, we introduced novel discretization and parameter-embedding techniques to solve the drift-diffusion system for strongly degenerate semiconductors at cryogenic temperature. Our methodical advances are demonstrated on various applications, including vertical-cavity surface-emitting lasers, grating couplers and single-photon sources.
  • Item
    Make the most of your visual simulation data
    (Zenodo, 2017) Drees, Bastian; Koprucki, Thomas
    There still exists no common standard on how to publish and cite visualisations of simulation data. We introduce the TIB AV-Portal as a sustainable infrastructure for audio-visual data using a combination of digital object identifiers (DOI) and media fragment identifiers (MFID) to cite these data in accordance with scientific standards. The benefits and opportunities of enhancing publications with visual data are illustrated by showing a use case from opto-electronics.
  • Item
    Numerical methods for drift-diffusion models
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Farrell, Patricio; Rotundo, Nella; Doan, Duy Hai; Kantner, Markus; Fuhrmann, Jürgen; Koprucki, Thomas
    The van Roosbroeck system describes the semi-classical transport of free electrons and holes in a self-consistent electric field using a drift-diffusion approximation. It became the standard model to describe the current flow in semiconductor devices at macroscopic scale. Typical devices modeled by these equations range from diodes, transistors, LEDs, solar cells and lasers to quantum nanostructures and organic semiconductors. The report provides an introduction into numerical methods for the van Roosbroeck system. The main focus lies on the Scharfetter-Gummel finite volume disretization scheme and recent efforts to generalize this approach to general statistical distribution functions.
  • Item
    Non-isothermal Scharfetter--Gummel scheme for electro-thermal transport simulation in degenerate semiconductors
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Kantner, Markus; Koprucki, Thomas
    Electro-thermal transport phenomena in semiconductors are described by the non-isothermal drift-diffusion system. The equations take a remarkably simple form when assuming the Kelvin formula for the thermopower. We present a novel, non-isothermal generalization of the Scharfetter--Gummel finite volume discretization for degenerate semiconductors obeying Fermi--Dirac statistics, which preserves numerous structural properties of the continuous model on the discrete level. The approach is demonstrated by 2D simulations of a heterojunction bipolar transistor.