Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Population transfer to high angular momentum states in infrared-assisted XUV photoionization of helium

2020, Mayer, Nicola, Peng, Peng, Villeneuve, David M., Patchkovskii, Serguei, Ivanov, Misha, Kornilov, Oleg, Vrakking, Marc J.J., Niikura, Hiromichi

An extreme-ultraviolet (XUV) laser pulse consisting of harmonics of a fundamental near-infrared (NIR) laser frequency is combined with the NIR pulse to systematically study two-color photoionization of helium atoms. A time-resolved photoelectron spectroscopy experiment is carried out where energy- A nd angle-resolved photoelectron distributions are obtained as a function of the NIR intensity and wavelength. Time-dependent Schrödinger equation calculations are performed for the conditions corresponding to the experiment and used to extract residual populations of Rydberg states resulting from excitation by the XUV + NIR pulse pair. The residual populations are studied as a function of the NIR intensity (3.5 × 1010-8 × 1012 W cm-2) and wavelength (760-820 nm). The evolution of the photoelectron distribution and the residual populations are interpreted using an effective restricted basis model, which includes the minimum set of states relevant to the features observed in the experiments. As a result, a comprehensive and intuitive picture of the laser-induced dynamics in helium atoms exposed to a two-color XUV-NIR light field is obtained. © 2020 The Author(s). Published by IOP Publishing Ltd.

Loading...
Thumbnail Image
Item

Phase cycling of extreme ultraviolet pulse sequences generated in rare gases

2020, Wituschek, Andreas, Kornilov, Oleg, Witting, Tobias, Maikowski, Laura, Stienkemeier, Frank, Vrakking, Marc J.J., Bruder, Lukas

The development of schemes for coherent nonlinear time-domain spectroscopy in the extreme-ultraviolet regime (XUV) has so far been impeded by experimental difficulties that arise at these short wavelengths. In this work we present a novel experimental approach, which facilitates the timing control and phase cycling of XUV pulse sequences produced by harmonic generation in rare gases. The method is demonstrated for the generation and high spectral resolution characterization of narrow-bandwidth harmonics (˜14 eV) in argon and krypton. Our technique simultaneously provides high phase stability and a pathway-selective detection scheme for nonlinear signals - both necessary prerequisites for all types of coherent nonlinear spectroscopy. © 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.

Loading...
Thumbnail Image
Item

Retrieval of attosecond pulse ensembles from streaking experiments using mixed state time-domain ptychography

2020, Witting, Tobias, Furch, Federico J., Kornilov, Oleg, Osolodkov, Mikhail, Schulz, Claus P., Vrakking, Marc J.J.

The electric field of attosecond laser pulses can be retrieved from laser-dressed photoionisation measurements, where electron wavepackets that result from single-photon ionisation by the attosecond pulse in the presence of a dressing field are produced. In case of fluctuating dressing laser and/or attosecond pulses, e.g. due to pulse-to-pulse fluctuations of the carrier envelope phase of the infrared laser pulse, commonly applied retrieval algorithms result in the erroneous extraction of the pulse fields. We present a mixed state time-domain ptychography algorithm for the retrieval of pulse ensembles from attosecond streaking experiments. © 2020 The Author(s). Published by IOP Publishing Ltd.

Loading...
Thumbnail Image
Item

Switching between Proton Vacancy and Excess Proton Transfer Pathways in the Reaction between 7-Hydroxyquinoline and Formate

2021, Codescu, Marius-Andrei, Weiß, Moritz, Brehm, Martin, Kornilov, Oleg, Sebastiani, Daniel, Nibbering, Erik T. J.

Bifunctional or amphoteric photoacids simultaneously present donor (acidic) and acceptor (basic) properties making them useful tools to analyze proton transfer reactions. In protic solvents, the proton exchange between the acid and the base is controlled by the acidity or basicity strength and typically occurs on two different pathways known as protolysis and hydrolysis. We report here how the addition of a formate base will alter the relative importance of the possible reaction pathways of the bifunctional photoacid 7-hydroxyquinoline (7HQ), which has been recently understood to predominantly involve a hydroxide/methoxide transport mechanism between the basic proton-accepting quinoline nitrogen site toward the proton-donating OH group with a time constant of 360 ps in deuterated methanol (CD3OD). We follow the reaction dynamics by probing the IR-active marker modes of the different charged forms of photoexcited 7HQ, and of formic acid (HCOOD) in CD3OD solution. A comparison of the transient IR spectra as a function of formate concentration, and classical molecular dynamics simulations enables us to identify distinct contributions of “tight” (meaning “contact”) and “loose” (i.e., “solvent-separated”) 7HQ–formate reaction pairs in our data. Our results suggest that depending on the orientation of the OH group with respect to the quinoline aromatic ring system, the presence of the formate molecule in a proton relay pathway facilitates a net proton transfer from the proton-donating OH group of 7HQ-N* via the methanol/formate bridge toward the quinoline N site.

Loading...
Thumbnail Image
Item

Femtosecond XUV–IR induced photodynamics in the methyl iodide cation

2021, Murillo-Sánchez, Marta L., Reitsma, Geert, Poullain, Sonia Marggi, Fernández-Milán, Pedro, González-Vázquez, Jesús, de Nalda, Rebeca, Martín, Fernando, Vrakking, Marc J. J., Kornilov, Oleg, Bañares, Luis

The time-resolved photodynamics of the methyl iodide cation (CH3I+) are investigated by means of femtosecond XUV-IR pump-probe spectroscopy. A time-delay-compensated XUV monochromator is employed to isolate a specific harmonic, the 9th harmonic of the fundamental 800 nm (13.95 eV, 88.89 nm), which is used as a pump pulse to prepare the cation in several electronic states. A time-delayed IR probe pulse is used to probe the dissociative dynamics on the first excited state potential energy surface. Photoelectrons and photofragment ions - and I+ - are detected by velocity map imaging. The experimental results are complemented with high level ab initio calculations for the potential energy curves of the electronic states of CH3I+ as well as with full dimension on-the-fly trajectory calculations on the first electronically excited state, considering the presence of the IR pulse. The and I+ pump-probe transients reflect the role of the IR pulse in controlling the photodynamics of CH3I+ in the state, mainly through the coupling to the ground state and to the excited state manifold. Oscillatory features are observed and attributed to a vibrational wave packet prepared in the state. The IR probe pulse induces a coupling between electronic states leading to a slow depletion of fragments after the cation is transferred to the ground states and an enhancement of I+ fragments by absorption of IR photons yielding dissociative photoionization. © 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.