Search Results

Now showing 1 - 2 of 2
  • Item
    Approach to Estimate the Phase Formation and the Mechanical Properties of Alloys Processed by Laser Powder Bed Fusion via Casting
    (Basel : MDPI, 2022) Kühn, Uta; Sander, Jan; Gabrysiak, Katharina Nicole; Giebeler, Lars; Kosiba, Konrad; Pilz, Stefan; Neufeld, Kai; Boehm, Anne Veronika; Hufenbach, Julia Kristin
    A high-performance tool steel with the nominal composition Fe85Cr4Mo8V2C1 (wt%) was processed by three different manufacturing techniques with rising cooling rates: conventional gravity casting, centrifugal casting and an additive manufacturing process, using laser powder bed fusion (LPBF). The resulting material of all processing routes reveals a microstructure, which is composed of martensite, austenite and carbides. However, comparing the size, the morphology and the weight fraction of the present phases, a significant difference of the gravity cast samples is evident, whereas the centrifugal cast material and the LPBF samples show certain commonalities leading finally to similar mechanical properties. This provides the opportunity to roughly estimate the mechanical properties of the material fabricated by LPBF. The major benefit arises from the required small material quantity and the low resources for the preparation of samples by centrifugal casting in comparison to the additive manufacturing process. Concluding, the present findings demonstrate the high attractiveness of centrifugal casting for the effective material screening and hence development of novel alloys adapted to LPBF-processing.
  • Item
    Phase Formation, Microstructure and Mechanical Properties of Mg67Ag33 as Potential Biomaterial
    (Basel : MDPI, 2021) Kosiba, Konrad; Prashanth, Konda Gokuldoss; Scudino, Sergio
    The phase and microstructure formation as well as mechanical properties of the rapidly solidified Mg67Ag33 (at. %) alloy were investigated. Owing to kinetic constraints effective during rapid cooling, the formation of equilibrium phases is suppressed. Instead, the microstructure is mainly composed of oversaturated hexagonal closest packed Mg-based dendrites surrounded by a mixture of phases, as probed by X-ray diffraction, electron microscopy and energy dispersive X-ray spectroscopy. A possible non-equilibrium phase diagram is suggested. Mainly because of the fine-grained dendritic and interdendritic microstructure, the material shows appreciable mechanical properties, such as a compressive yield strength and Young’s modulus of 245 ± 5 MPa and 63 ± 2 GPa, respectively. Due to this low Young’s modulus, the Mg67Ag33 alloy has potential for usage as biomaterial and challenges ahead, such as biomechanical compatibility, biodegradability and antibacterial properties are outlined.