Search Results

Now showing 1 - 2 of 2
  • Item
    On the possibility of PhotoEmission Electron Microscopy for E. coli advanced studies
    (Amsterdam [u.a.] : Elsevier, 2020) Turishchev, S.Yu.; Marchenko, D.; Sivakov, V.; Belikov, E.A.; Chuvenkova, O.A.; Parinova, E.V.; Koyuda, D.A.; Chumakov, R.G.; Lebedev, A.M.; Kulikova, T.V.; Berezhnoy, A.A.; Valiakhmedova, I.V.; Praslova, N.V.; Preobrazhenskaya, E.V.; Antipov, S.S.
    The novel approach was proposed for detailed high-resolution studies of morphology and physico-chemical properties concomitantly at one measurement spot of E. coli bacterial cells culture immobilized onto silicon wafer surface in UHV conditions applying PhotoEmission Electron Microscopy under Hg lamp irradiation. For the E. coli characterization scanning electron microscopy (electron beam) and X-ray photoelectron spectroscopy (X-ray tube radiation) were applied prior to PhotoEmission Electron Microscopy measurements. In spite of irradiation doses collected for the cell arrays we were successful in detection of high-resolution images even of single E. coli bacterium by PhotoEmission Electron Microscopy technique followed by detailed high-resolution morphology studies by scanning electron microscopy. These results revealed widespread stability of the E. coli membranes shape after the significant number of applied characterization techniques. © 2019 The Authors
  • Item
    Synchrotron studies of top-down grown silicon nanowires
    (Amsterdam : Elsevier, 2018) Turishchev, S.Yu.; Parinova, V.E.; Nesterov, D.N.; Koyuda, D.A.; Sivakov, Vladimir; Schleusener, Alexander; Terekhov, V.A.
    Morphology of the top-down grown silicon nanowires obtained by metal-assisted wet-chemical approach on silicon substrates with different resistance were studied by scanning electron microscopy. Obtained arrays of compact grown Si nanowires were a subject for the high resolution electronic structures studies by X-ray absorption near edge structure technique performed with the usage of high intensity synchrotron radiation of the SRC storage ring of the University of Wisconsin-Madison. The different oxidation rates were found by investigation of silicon atoms local surrounding specificity of the highly developed surface and near surface layer that is not exceeded 70 nm. Flexibility of the wires arrays surface morphology and its composition is demonstrated allowing smoothly form necessary surface oxidation rate and using Si nanowires as a useful matrixes for a wide range of further functionalization.