Search Results

Now showing 1 - 3 of 3
  • Item
    Non-Canonical activation of the epidermal growth factor receptor by carbon nanoparticles
    (Basel : MDPI, 2018) Stöckmann, Daniel; Spannbrucker, Tim; Ale-Agha, Niloofar; Jakobs, Phillipp; Goy, Christine; Dyballa-Rukes, Nadine; Hornstein, Tamara; Kümper, Alexander; Kraegeloh, Annette; Haendeler, Judith; Unfried, Klaus
    The epidermal growth factor receptor (EGFR) is an abundant membrane protein, which is essential for regulating many cellular processes including cell proliferation. In our earlier studies, we observed an activation of the EGFR and subsequent signaling events after the exposure of epithelial cells to carbon nanoparticles. In the current study, we describe molecular mechanisms that allow for discriminating carbon nanoparticle-specific from ligand-dependent receptor activation. Caveolin-1 is a key player that co-localizes with the EGFR upon receptor activation by carbon nanoparticles. This specific process mediated by nanoparticle-induced reactive oxygen species and the accumulation of ceramides in the plasma membrane is not triggered when cells are exposed to non-nano carbon particles or the physiological ligand EGF. The role of caveolae formation was demonstrated by the induction of higher order structures of caveolin-1 and by the inhibition of caveolae formation. Using an in vivo model with genetically modified mice lacking caveolin-1, it was possible to demonstrate that carbon nanoparticles in vivo trigger EGFR downstream signaling cascades via caveolin-1. The identified molecular mechanisms are, therefore, of toxicological relevance for inhaled nanoparticles. However, nanoparticles that are intentionally applied to humans might cause side effects depending on this phenomenon.
  • Item
    How Structured Metadata Acquisition Contributes to the Reproducibility of Nanosafety Studies: Evaluation by a Round-Robin Test
    (Basel : MDPI, 2022) Elberskirch, Linda; Sofranko, Adriana; Liebing, Julia; Riefler, Norbert; Binder, Kunigunde; Bonatto Minella, Christian; Razum, Matthias; Mädler, Lutz; Unfried, Klaus; Schins, Roel P.F.; Kraegeloh, Annette; van Thriel, Christoph
    It has been widely recognized that nanosafety studies are limited in reproducibility, caused by missing or inadequate information and data gaps. Reliable and comprehensive studies should be performed supported by standards or guidelines, which need to be harmonized and usable for the multidisciplinary field of nanosafety research. The previously described minimal information table (MIT), based on existing standards or guidelines, represents one approach towards harmonization. Here, we demonstrate the applicability and advantages of the MIT by a round-robin test. Its modular structure enables describing individual studies comprehensively by a combination of various relevant aspects. Three laboratories conducted a WST-1 cell viability assay using A549 cells to analyze the effects of the reference nanomaterials NM101 and NM110 according to predefined (S)OPs. The MIT contains relevant and defined descriptive information and quality criteria and thus supported the implementation of the round-robin test from planning, investigation to analysis and data interpretation. As a result, we could identify sources of variability and justify deviating results attributed to differences in specific procedures. Consequently, the use of the MIT contributes to the acquisition of reliable and comprehensive datasets and therefore improves the significance and reusability of nanosafety studies
  • Item
    Implementation of safe-by-design for nanomaterial development and safe innovation: Why we need a comprehensive approach
    (Basel : MDPI, 2018) Kraegeloh, Annette; Suarez-Merino, Blanca; Sluijter, Teun; Micheletti, Christian
    Manufactured nanomaterials (MNMs) are regarded as key components of innovations in various fields with high potential impact (e.g., energy generation and storage, electronics, photonics, diagnostics, theranostics, or drug delivery agents). Widespread use of MNMs raises concerns about their safety for humans and the environment, possibly limiting the impact of the nanotechnology-based innovation. The development of safe MNMs and nanoproducts has to result in a safe as well as functional material or product. Its safe use, and disposal at the end of its life cycle must be taken into account too. However, not all MNMs are similarly useful for all applications, some might bear a higher hazard potential than others, and use scenarios could lead to different exposure probabilities. To improve both safety and efficacy of nanotechnology, we think that a new proactive approach is necessary, based on pre-regulatory safety assessment and dialogue between stakeholders. On the basis of the work carried out in different European Union (EU) initiatives, developing and integrating MNMs Safe-by-Design and Trusted Environments (NANoREG, ProSafe, and NanoReg2), we present our point of view here. This concept, when fully developed, will allow for cost effective industrial innovation, and an exchange of key information between regulators and innovators. Regulators are thus informed about incoming innovations in good time, supporting a proactive regulatory action. The final goal is to contribute to the nanotechnology governance, having faster, cheaper, effective, and safer nano-products on the market.