Search Results

Now showing 1 - 10 of 11
Loading...
Thumbnail Image
Item

Influence of core size and capping ligand of gold nanoparticles on the desorption/ionization efficiency of small biomolecules in AP‐SALDI‐MS

2020, Liu, Zhen, Zhang, Peng, Pyttlik, Andrea, Kraus, Tobias, Volmer, Dietrich A.

Gold nanoparticles (AuNP) are frequently used in surface‐assisted laser desorption/ionization mass spectrometry (SALDI‐MS) for analysis of biomolecules because they exhibit suitable thermal and chemical properties as well as strong surface plasmonic effects. Moreover, the structures of AuNP can be controlled by well‐established synthesis protocols. This was important in the present work, which studied the influence of the nanoparticles’ structures on atmospheric pressure (AP)‐SALDI‐MS performance. A series of AuNP with different core sizes and capping ligands were investigated, to examine the desorption/ionization efficiency (DIE) under AP‐SALDI conditions. The results showed that both the AuNP core size as well as the nature of the surface ligand had a strong influence on DIE. DIE increased with the size of the AuNP and the hydrophobicity of the ligands. Chemical interactions between ligand and analytes also influenced DIE. Moreover, we discovered that removing the organic ligands from the deposited AuNP substrate layer by simple laser irradiation prior to LDI further amplified DIE values. The optimized AuNP were successfully used to analyze a wide arrange of different low molecular weight biomolecules as well as a crude pig brain extract, which readily demonstrated the ability of the technique to detect a wide range of lipid species within highly complex samples.

Loading...
Thumbnail Image
Item

Organosilicate nanoparticles - a familiar material in new shape

2010, Murray, Eoin, Kraus, Tobias

[no abstract available]

Loading...
Thumbnail Image
Item

Toward a Li-Ion Battery Ontology Covering Production and Material Structure

2022, Mutz, Marcel, Perovic, Milena, Gümbel, Philip, Steinbauer, Veit, Taranovskyy, Andriy, Li, Yunjie, Beran, Lisa, Käfer, Tobias, Dröder, Klaus, Knoblauch, Volker, Kwade, Arno, Presser, Volker, Werth, Dirk, Kraus, Tobias

An ontology for the structured storage, retrieval, and analysis of data on lithium-ion battery materials and electrode-to-cell production is presented. It provides a logical structure that is mapped onto a digital architecture and used to visualize, correlate, and make predictions in battery production, research, and development. Materials and processes are specified using a predetermined terminology; a chain of unit processes (steps) connects raw materials and products (items) of battery cell production. The ontology enables the attachment of analytical methods (characterization methods) to items. Workshops and interviews with experts in battery materials and production processes are conducted to ensure that the structure is conformable both for industrial-scale and laboratory-scale data generation and implementation. Raw materials and intermediate products are identified and defined for all steps to the final battery cell. Steps and items are defined based on current standard materials and process chains using terms that are in common use. Alternative structures and the connection of the ontology to other existing ontologies are discussed. The contribution provides a pragmatic, accessible way to unify the storage of materials-oriented lithium-ion battery production data. It aids the linkage of such data with domain knowledge and the automation of data analysis in production and research.

Loading...
Thumbnail Image
Item

The role of ligands in coinage-metal nanoparticles for electronics

2017, Kanelidis, Ioannis, Kraus, Tobias

Coinage-metal nanoparticles are key components of many printable electronic inks. They can be combined with polymers to form conductive composites and have been used as the basis of molecular electronic devices. This review summarizes the multidimensional role of surface ligands that cover their metal cores. Ligands not only passivate crystal facets and determine growth rates and shapes; they also affect size and colloidal stability. Particle shapes can be tuned via the ligand choice while ligand length, size, ω-functionalities, and chemical nature influence shelf-life and stability of nanoparticles in dispersions. When particles are deposited, ligands affect the electrical properties of the resulting film, the morphology of particle films, and the nature of the interfaces. The effects of the ligands on sintering, cross-linking, and self-assembly of particles in electronic materials are discussed.

Loading...
Thumbnail Image
Item

Dynamic Light Scattering on Nanoparticles in Microgravity in a Drop Tower

2022, Pyttlik, Andrea, Kuttich, Björn, Kraus, Tobias

Gravity affects colloidal dispersions via sedimentation and convection. We used dynamic light scattering (DLS) to quantify the mobility of nanoparticles on ground and in microgravity. A DLS instrument was adapted to withstand the accelerations in a drop tower, and a liquid handling set-up was connected in order to stabilize the liquid temperature and enable rapid cooling or heating. Light scattering experiments were performed in the drop tower at ZARM (Bremen, Germany) during a microgravity interval of 9.1 s and compared to measurements on ground. Particle dynamics were analyzed at constant temperature and after a rapid temperature drop using a series of DLS measurements with 1 s integration time. We observed nanoparticles with average gold core diameters of 7.8 nm and non-polar oleylamine shells that were dispersed in tetradecane and had an average hydrodynamic diameter of 21 nm. The particles did not change their diameter in the observed temperature range. The particle dynamics inferred from DLS on ground and in microgravity were in good agreement, demonstrating the possibility to perform reliable DLS measurements in a drop tower.

Loading...
Thumbnail Image
Item

The scale-up of material microstructuring: a perspective

2009, Kraus, Tobias

[no abstract available]

Loading...
Thumbnail Image
Item

Advancing environmental intelligence through novel approaches in soft bioinspired robotics and allied technologies: I-Seed project position paper for Environmental Intelligence in Europe

2022, Mazzolai, Barbara, Kraus, Tobias, Pirrone, Nicola, Kooistra, Lammert, De Simone, Antonio, Cottin, Antoine, Margheri, Laura

The EU-funded FET Proactive Environmental Intelligence project "I-Seed"(Grant Agreement n. 101017940, https://www.iseedproject.eu/) targets towards the development of a radically simplified and environmentally friendly approach for environmental monitoring. Specifically, I-Seed aims at developing a new generation of self-deployable and biodegradable soft miniaturized robots, inspired by the morphology and dispersion abilities of plant seeds, able to perform low-cost, environmentally responsible, in-situ measurements. The natural functional mechanisms of seeds dispersal offer a rich source of robust, highly adaptive, mass and energy efficient mechanisms, and behavioral and morphological intelligence, which can be selected and implemented for advanced, but simple, technological inventions. I-Seed robots are conceived as unique in their movement abilities because inspired by passive mechanisms and materials of natural seeds, and unique in their environmentally friendly design because made of all biodegradable components. Sensing is based on a chemical transduction mechanism in a stimulus-responsive sensor material with fluorescence-based optical readout, which can be read via one or more drones equipped with fluorescent LiDAR technology and a software able to perform a real time georeferencing of data. The I-Seed robotic ecosystem is envisioned to be used for collecting environmental data in-situ with high spatial and temporal resolution across large remote areas where no monitoring data are available, and thus for extending current environmental sensor frameworks and data analysis systems.

Loading...
Thumbnail Image
Item

X-ray imaging with scintillator-sensitized hybrid organic photodetectors

2015, Büchele, Patric, Richter, Moses, Tedde, Sandro F., Matt, Gebhard J., Ankah, Genesis N., Fischer, Rene, Biele, Markus, Metzger, Wilhelm, Lilliu, Samuele, Bikondoa, Oier, Macdonald, J. Emyr, Brabec, Christoph J., Kraus, Tobias, Lemmer, Uli, Schmidt, Oliver

Medical X-ray imaging requires cost-effective and high-resolution flat-panel detectors for the energy range between 20 and 120 keV. Solution-processed photodetectors provide the opportunity to fabricate detectors with a large active area at low cost. Here, we present a disruptive approach that improves the resolution of such detectors by incorporating terbium-doped gadolinium oxysulfide scintillator particles into an organic photodetector matrix. The X-ray induced light emission from the scintillators is absorbed within hundreds of nanometres, which is negligible compared with the pixel size. Hence, optical crosstalk, a limiting factor in the resolution of scintillator-based X-ray detectors, is minimized. The concept is validated with a 256 × 256 pixel detector with a resolution of 4.75 lp mm−1 at a MTF = 0.2, significantly better than previous stacked scintillator-based flat-panel detectors. We achieved a resolution that proves the feasibility of solution-based detectors in medical applications. Time-resolved electrical characterization showed enhanced charge carrier mobility with increased scintillator filling, which is explained by morphological changes.

Loading...
Thumbnail Image
Item

Ultrathin gold nanowires for transparent electronics: breaking barriers

2016, Gonzalez-Garcia, Lola, Maurer, Johannes H.M., Reiser, Beate, Kanelidis, Ioannis, Kraus, Tobias

Novel types of Transparent Conductive Materials (TCMs) based on metal nanostructures are discussed. Dispersed metal nanoparticles can be deposited from liquids with moderate thermal budgets to form conductive films that are suitable for thin-film solar cells, displays, touch screens, and nanoelectronics. We aim at new TCMs that combine high electrical conductivity with optical transparency and mechanical flexibility. Wet-processed films of randomly arranged metallic nanowires networks are commercially established and provide a relatively cost-effective, scalable production. Ultrathin gold nanowires (AuNWs) with diameters below 2 nm and high aspect ratios have recently become available. They combine mechanical flexibility, high optical transparency, and chemical inertness. AuNWs carry oleylamine capping ligands from synthesis that cause high contact resistances at their junctions. We investigated different annealing processes based on temperature and plasma treatment, to remove the ligands after deposition and to allow electrical conductivity. Their effect on the resulting nanostructure and on the material properties was studied. Scanning Electron Microscopy (SEM) and optical spectroscopy revealed changes in the microstructure for the different post-treatments. We found that the conductivity and the stability of the TCM depended strongly on its final microstructure. We demonstrate that the best results are obtained using H2-plasma treatment.

Loading...
Thumbnail Image
Item

Maximizing transfection efficiency of vertically aligned silicon nanowire arrays

2015, Elnathan, Roey, Delalat, Bahman, Brodoceanu, Daniel, Alhoud, Hashim, Harding, Frances J., Buehler, Katrin, Nelson, Adrienne, Isa, Lucio, Kraus, Tobias, Voelcker, Nicolas H.

Vertically aligned silicon nanowire (VA‐SiNW) arrays are emerging as a powerful new tool for gene delivery by means of mechanical transfection. In order to utilize this tool efficiently, uncertainties around the required design parameters need to be removed. Here, a combination of nanosphere lithography and templated metal‐assisted wet chemical etching is used to fabricate VA‐SiNW arrays with a range of diameters, heights, and densities. This fabrication strategy allows identification of critical parameters of surface topography and consequently the design of SiNW arrays that deliver plasmid with high transfection efficiency into a diverse range of human cells whilst maintaining high cell viability. These results illuminate the cell‐materials interactions that mediate VA‐SiNW transfection and have the potential to transform gene therapy and underpin future treatment modalities.