Search Results

Now showing 1 - 10 of 22
  • Item
    Lightweight polymer-carbon composite current collector for lithium-ion batteries
    (Basel : MDPI, 2020) Fritsch, Marco; Coeler, Matthias; Kunz, Karina; Krause, Beate; Marcinkowski, Peter; Pötschke, Petra; Wolter, Mareike; Michaelis, Alexander
    A hermetic dense polymer-carbon composite-based current collector foil (PCCF) for lithium-ion battery applications was developed and evaluated in comparison to state-of-the-art aluminum (Al) foil collector. Water-processed LiNi0.5Mn1.5O4 (LMNO) cathode and Li4Ti5O12 (LTO) anode coatings with the integration of a thin carbon primer at the interface to the collector were prepared. Despite the fact that the laboratory manufactured PCCF shows a much higher film thickness of 55 µm compared to Al foil of 19 µm, the electrode resistance was measured to be by a factor of 5 lower compared to the Al collector, which was attributed to the low contact resistance between PCCF, carbon primer and electrode microstructure. The PCCF-C-primer collector shows a sufficient voltage stability up to 5 V vs. Li/Li+ and a negligible Li-intercalation loss into the carbon primer. Electrochemical cell tests demonstrate the applicability of the developed PCCF for LMNO and LTO electrodes, with no disadvantage compared to state-of-the-art Al collector. Due to a 50% lower material density, the lightweight and hermetic dense PCCF polymer collector offers the possibility to significantly decrease the mass loading of the collector in battery cells, which can be of special interest for bipolar battery architectures. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    High-Performance, Lightweight, and Flexible Thermoplastic Polyurethane Nanocomposites with Zn2+-Substituted CoFe2O4 Nanoparticles and Reduced Graphene Oxide as Shielding Materials against Electromagnetic Pollution
    (Washington, DC : ACS Publications, 2021-10-11) Anju; Yadav, Raghvendra Singh; Pötschke, Petra; Pionteck, Jürgen; Krause, Beate; Kuřitka, Ivo; Vilcakova, Jarmila; Skoda, David; Urbánek, Pavel; Machovsky, Michal; Masař, Milan; Urbánek, Michal; Jurca, Marek; Kalina, Lukas; Havlica, Jaromir
    The development of flexible, lightweight, and thin high-performance electromagnetic interference shielding materials is urgently needed for the protection of humans, the environment, and electronic devices against electromagnetic radiation. To achieve this, the spinel ferrite nanoparticles CoFe2O4 (CZ1), Co0.67Zn0.33Fe2O4 (CZ2), and Co0.33Zn0.67Fe2O4 (CZ3) were prepared by the sonochemical synthesis method. Further, these prepared spinel ferrite nanoparticles and reduced graphene oxide (rGO) were embedded in a thermoplastic polyurethane (TPU) matrix. The maximum electromagnetic interference (EMI) total shielding effectiveness (SET) values in the frequency range 8.2-12.4 GHz of these nanocomposites with a thickness of only 0.8 mm were 48.3, 61.8, and 67.8 dB for CZ1-rGO-TPU, CZ2-rGO-TPU, and CZ3-rGO-TPU, respectively. The high-performance electromagnetic interference shielding characteristics of the CZ3-rGO-TPU nanocomposite stem from dipole and interfacial polarization, conduction loss, multiple scattering, eddy current effect, natural resonance, high attenuation constant, and impedance matching. The optimized CZ3-rGO-TPU nanocomposite can be a potential candidate as a lightweight, flexible, thin, and high-performance electromagnetic interference shielding material.
  • Item
    The force of MOFs: The potential of switchable metal-organic frameworks as solvent stimulated actuators
    (Cambridge : RSC, 2020) Freund, Pascal; Senkovska, Irena; Zheng, Bin; Bon, Volodymyr; Krause, Beate; Maurin, Guillaume; Kaskel, Stefan
    We evaluate experimentally the force exerted by flexible metal-organic frameworks through expansion for a representative model system, namely MIL-53(Al). The results obtained are compared with data collected from intrusion experiments while molecular simulations are performed to shed light on the re-opening of the guest-loaded structure. The critical impact of the transition stimulating medium on the magnitude of the expansion force is demonstrated.
  • Item
    Graphite modified epoxy-based adhesive for joining of aluminium and PP/graphite composites
    (New York, NY [u.a.] : Taylor & Francis, 2020) Rzeczkowski, P.; Pötschke, Petra; Fischer, M.; Kühnert, I.; Krause, Beate
    A graphite-modified adhesive was developed in order to simultaneously enhance the thermal conductivity and the strength of an adhesive joint. The thermal conductivity through the joint was investigated by using highly filled PP/graphite composite substrates, which were joined with an epoxy adhesive of different layer thicknesses. Similar measurements were carried out with a constant adhesive layer thickness, whilst applying an epoxy adhesive modified with expanded graphite (EG) (6, 10, and 20 wt%). By reducing the adhesive layer thickness or modifying the adhesive with conductive fillers, a significant increase of the thermal conductivity through the joint was achieved. The examination of the mechanical properties of the modified adhesives was carried out by tensile tests (adhesive only), lap-shear tests, and fracture energy tests (mode 1) with aluminium substrates. Modification of the adhesive with EG led to an increase of the tensile lap-shear strength and the adhesive fracture energy (mode 1) of the joint. In addition, burst pressure tests were performed to determine the strength of the joint in a complex component. The strength of the joint increased with the graphite content in the PP substrate and in the epoxy adhesive.
  • Item
    Experimental and computational analysis of thermoelectric modules based on melt-mixed polypropylene composites
    (Amsterdam : Elsevier, 2023) Doraghi, Qusay; Żabnieńska-Góra, Alina; Norman, Les; Krause, Beate; Pötschke, Petra; Jouhara, Hussam
    Researchers are constantly looking for new materials that exploit the Seebeck phenomenon to convert heat into electrical energy using thermoelectric generators (TEGs). New lead-free thermoelectric materials are being investigated as part of the EU project InComEss, with one of the anticipated uses being converting wasted heat into electric energy. Such research aims to reduce the production costs as well as the environmental impact of current TEG modules which mostly employ bismuth for their construction. The use of polymers that, despite lower efficiency, achieve increasingly higher values of electrical conductivity and Seebeck coefficients at a low heat transfer coefficient is increasingly discussed in the literature. This article presents two thermoelectric generator (TEG) models based on data previously described in the literature. Two types of designs are presented: consisting of 4- and 49-leg pairs of p- and n-type composites based on polypropylene melt-mixed with single-walled carbon nanotubes. The models being developed using COMSOL Multiphysics software and validated based on measurements carried out in the laboratory. Based on the results of the analysis, conductive polymer composites employing insulating matrices can be considered as a promising material of the future for TEG modules.
  • Item
    Messanlage zur Untersuchung des Seebeck-Effektes in Polymermaterialien
    (Berlin : De Gruyter, 2020) Jenschke, Wolfgang; Ullrich, Mathias; Krause, Beate; Pötschke, Petra
    The thermoelectric effect named after the physicist Thomas Johann Seebeck has been investigated sufficiently well for all technically relevant metals and has been used for a long time, among other things, for temperature measurement by means of thermocouples. Less well known and researched is the Seebeck effect in polymer materials, which are gaining increasing influence in the sensor industry today. This article describes a measuring system designed specifically to study the Seebeck effect in polymeric samples with the aim of developing tailored polymers for sensory engineering applications using the Seebeck effect. The special requirement of the measuring system is the realization of constant accurate temperature sources.
  • Item
    Influence of Polyvinylpyrrolidone on Thermoelectric Properties of Melt-Mixed Polymer/Carbon Nanotube Composites
    (Basel : MDPI, 2023) Krause, Beate; Imhoff, Sarah; Voit, Brigitte; Pötschke, Petra
    For thermoelectric applications, both p- and n-type semi-conductive materials are combined. In melt-mixed composites based on thermoplastic polymers and carbon nanotubes, usually the p-type with a positive Seebeck coefficient (S) is present. One way to produce composites with a negative Seebeck coefficient is to add further additives. In the present study, for the first time, the combination of single-walled carbon nanotubes (SWCNTs) with polyvinylpyrrolidone (PVP) in melt-mixed composites is investigated. Polycarbonate (PC), poly(butylene terephthalate) (PBT), and poly(ether ether ketone) (PEEK) filled with SWCNTs and PVP were melt-mixed in small scales and thermoelectric properties of compression moulded plates were studied. It could be shown that a switch in the S-value from positive to negative values was only possible for PC composites. The addition of 5 wt% PVP shifted the S-value from 37.8 µV/K to −31.5 µV/K (2 wt% SWCNT). For PBT as a matrix, a decrease in the Seebeck coefficient from 59.4 µV/K to 8.0 µV/K (8 wt% PVP, 2 wt% SWCNT) could be found. In PEEK-based composites, the S-value increased slightly with the PVP content from 48.0 µV/K up to 54.3 µV/K (3 wt% PVP, 1 wt% SWCNT). In addition, the long-term stability of the composites was studied. Unfortunately, the achieved properties were not stable over a storage time of 6 or 18 months. Thus, in summary, PVP is not suitable for producing long-term stable, melt-mixed n-type SWCNT composites.
  • Item
    Blend Structure and n-Type Thermoelectric Performance of PA6/SAN and PA6/PMMA Blends Filled with Singlewalled Carbon Nanotubes
    (Basel : MDPI, 2021-4-28) Krause, Beate; Liguoro, Alice; Pötschke, Petra
    The present study investigates how the formation of melt-mixed immiscible blends based on PA6/SAN and PA6/PMMA filled with single walled nanotubes (SWCNTs) affects the thermoelectric (TE) properties. In addition to the detailed investigation of the blend morphology with compositions between 100/0 wt.% and 50/50 wt.%, the thermoelectric properties are investigated on blends with different SWCNT concentrations (0.25–3.0 wt.%). Both PA6 and the blend composites with the used type of SWCNTs showed negative Seebeck coefficients. It was shown that the PA6 matrix polymer, in which the SWCNTs are localized, mainly influenced the thermoelectric properties of blends with high SWCNT contents. By varying the blend composition, an increase in the absolute Seebeck coefficient, power factor (PF), and figure of merit (ZT) was achieved compared to the PA6 composite which is mainly related to the selective localization and enrichment of SWCNTs in the PA6 matrix at constant SWCNT loading. The maximum PFs achieved were 0.22 µW/m·K2 for PA6/SAN/SWCNT 70/30/3 wt.% and 0.13 µW/m·K2 for PA6/PMMA/SWCNT 60/40/3 wt.% compared to 0.09 µW/m·K2 for PA6/3 wt.% SWCNT which represent increases to 244% and 144%, respectively. At higher PMMA or SAN concentration, the change from matrix-droplet to a co-continuous morphology started, which, despite higher SWCNT enrichment in the PA6 matrix, disturbed the electrical conductivity, resulting in reduced PFs with still increasing Seebeck coefficients. At SWCNT contents between 0.5 and 3 wt.% the increase in the absolute Seebeck coefficient was compensated by lower electrical conductivity resulting in lower PF and ZT as compared to the PA6 composites.
  • Item
    Boron doping of SWCNTs as a way to enhance the thermoelectric properties of melt‐mixed polypropylene/SWCNT composites
    (Basel : MDPI, 2020) Krause, Beate; Bezugly, Viktor; Khavrus, Vyacheslav; Ye, Liu; Cuniberti, Gianaurelio; Pötschke, Petra
    Composites based on the matrix polymer polypropylene (PP) filled with single‐walled carbon nanotubes (SWCNTs) and boron‐doped SWCNTs (B‐SWCNTs) were prepared by melt‐mixing to analyze the influence of boron doping of SWCNTs on the thermoelectric properties of these nanocomposites. It was found that besides a significantly higher Seebeck coefficient of B‐SWCNT films and powder packages, the values for B‐SWCNT incorporated in PP were higher than those for SWCNTs. Due to the higher electrical conductivity and the higher Seebeck coefficients of B‐SWCNTs, the power factor (PF) and the figure of merit (ZT) were also higher for the PP/B‐SWCNT composites. The highest value achieved in this study was a Seebeck coefficient of 59.7 μV/K for PP with 0.5 wt% B‐SWCNT compared to 47.9 μV/K for SWCNTs at the same filling level. The highest PF was 0.78 μW/(m∙K2) for PP with 7.5 wt% B‐SWCNT. SWCNT macro‐ and microdispersions were found to be similar in both composite types, as was the very low electrical percolation threshold between 0.075 and 0.1 wt% SWCNT. At loadings between 0.5 and 2.0 wt%, B‐SWCNT‐based composites have one order of magnitude higher electrical conductivity than those based on SWCNT. The crystallization behavior of PP is more strongly influenced by B‐SWCNTs since their composites have higher crystallization temperatures than composites with SWCNTs at a comparable degree of crystallinity. Boron doping of SWCNTs is therefore a suitable way to improve the electrical and thermoelectric properties of composites. © 2020 by the authors.
  • Item
    Surface modification of MWCNT and its influence on properties of paraffin/MWCNT nanocomposites as phase change material
    (Hoboken, NJ [u.a.] : Wiley InterScience, 2020) Avid, Arezoo; Jafari, Seyed Hassan; Khonakdar, Hossein Ali; Ghaffari, Mehdi; Krause, Beate; Pötschke, Petra
    Multiwalled carbon nanotubes (MWCNTs) were modified by an organo-silane in order to improve their dispersion state and stability in paraffin wax. A family of paraffin-based phase change material (PCM) composites filled with MWCNTs was prepared with different loadings (0, 0.1, 0.5, and 1 wt%) of pristine MWCNTs and organo-silane modified MWCNTs (Si-MWCNT). Structural analyses were performed by means of Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and rheological studies using temperature sweeps. Moreover, phase change transition temperatures and heat of fusion as well as thermal and electrical conductivities of the developed PCM nanocomposites were determined. The SEM micrographs and FTIR absorption bands appearing at approximately 1038 and 1112 cm−1 confirmed the silane modification. Differential scanning calorimetery (DSC) results indicate that the presence of Si-MWCNTs leads to slightly favorable enhancement in the energy storage capacity at the maximum loading. It was also shown that the thermal conductivity of the PCM nanocomposites, in both solid and liquid phases, increased with increasing the MWCNT content independent of the kind of MWCNTs by up to about 30% at the maximum loading of MWCNTs. In addition, the modification of MWCNTs made the samples completely electrically nonconductive, and the electrical surface resistivity of the PCMs containing pristine MWCNTs decreased with increasing MWCNTs loading. Furthermore, the rheological assessment under consecutive cyclic phase change demonstrated that the samples containing modified MWCNTs are more stable compared to the PCM containing pristine MWCNTs. © 2019 Wiley