Search Results

Now showing 1 - 10 of 11
Loading...
Thumbnail Image
Item

Methods to characterize the dispersability of carbon nanotubes and their length distribution

2012, Krause, Beate, Mende, Mandy, Petzold, Gudrun, Boldt, Regine, Pötschke, Petra

Two main properties of carbon nanotube (CNT) materials are discussed in this contribution. First, a method to characterize the dispersability of CNT materials in aqueous surfactant solutions in presented, which also allows conclusions towards the dispersability in other media, like polymer melts. On the other hand it is shown, how the length of CNTs before and after processing, e.g., after melt mixing with thermoplastics, can be quantified. Both methods are illustrated with examples and the practical relevance is shown. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Loading...
Thumbnail Image
Item

Dispersability of multiwalled carbon nanotubes in polycarbonate-chloroform solutions

2014, Staudinger, Ulrike, Krause, Beate, Steinbach, Christine, Pötschke, Petra, Voit, Brigitte

The dispersion of commercial multiwalled carbon nanotubes (MWCNTs, Nanocyl™ NC7000) in chloroform and in polycarbonate (PC)-chloroform solutions was investigated by variation of the polymer concentration, MWCNT amount and sonication time and compared with PC/MWCNT composites, which were processed by melt mixing, subsequently dissolved in chloroform and dispersed via sonication under the same conditions. The sedimentation behaviour was characterised under centrifugal forces using a LUMiSizer® separation analyser. The space and time resolved extinction profiles as a measure of the stability of the dispersion and the particle size distribution were evaluated. Sonication up to 5 min gradually increases the amount of dispersed particles in the solutions. A significant improvement of the MWCNT dispersion in chloroform was achieved by the addition of PC indicating the mechanism of polymer chain wrapping around the MWCNTs. In dispersions of melt mixed PC/MWCNT composites the dispersion of MWCNTs is significantly enhanced already at a low sonication time of only 0.5 min due to very efficient polymer wrapping during the melt mixing process. However, the best dispersion quality does not lead to the highest electrical conductivity of thin composite films made of these PC/MWCNT dispersions.

Loading...
Thumbnail Image
Item

The influence of matrix viscosity on MWCNT dispersion and electrical properties in different thermoplastic nanocomposites

2012, Socher, Robert, Krause, Beate, Müller, Michael T., Boldt, Regine, Pötschke, Petra

Composites of MWCNTs having each three different levels of matrix viscosity with five different polymers (polyamide 12, polybutylene terephthalate, polycarbonate, polyetheretherketone and low density polyethylene) were melt mixed to identify the general influence of matrix viscosity on the electrical properties and the state of MWCNT dispersion. Huge differences in the electrical percolation thresholds were found using the same polymer matrix with different viscosity grades. The lowest percolation thresholds were always found in the composites based on the low viscosity matrix. The state of primary MWCNT agglomerate dispersion increased with increasing matrix viscosity due to the higher input of mixing energy. TEM investigations showed nanoagglomerated structures in the low viscosity samples which are obviously needed to achieve low resistivity values. The effect of nanotube shortening was quantified using two different viscosity grades of polycarbonate. Due to the higher mixing energy input the nanotube shortening was more pronounced in the high viscosity matrix which partially explains the higher percolation threshold. © 2011 Elsevier Ltd. All rights reserved.

Loading...
Thumbnail Image
Item

Melt-mixed PP/MWCNT composites: Influence of CNT incorporation strategy and matrix viscosity on filler dispersion and electrical resistivity

2019, Pötschke, Petra, Mothes, Fanny, Krause, Beate, Voit, Brigitte

Small-scale melt mixing was performed for composites based on polypropylene (PP) and 0.5–7.5 wt % multiwalled carbon nanotubes (MWCNT) to determine if masterbatch (MB) dilution is a more effective form of nanofiller dispersion than direct nanotube incorporation. The methods were compared using composites of five different PP types, each filled with 2 wt % MWCNTs. After the determination of the specific mechanical energy (SME) input in the MB dilution process, the direct-incorporation mixing time was adjusted to achieve comparable SME values. Interestingly, the electrical resistivity of MB-prepared samples with 2 wt % MWCNTs was higher than that of those prepared using direct incorporation—despite their better dispersion—suggesting more pronounced MWCNT shortening in the two-step procedure. In summary, this study on PP suggests that the masterbatch approach is suitable for the dispersion of MWCNTs and holds advantages in nanotube dispersion, albeit at the cost of slightly increased electrical resistivity.

Loading...
Thumbnail Image
Item

Screening of Different Carbon Nanotubes in Melt-Mixed Polymer Composites with Different Polymer Matrices for Their Thermoelectrical Properties

2019-12-7, Krause, Beate, Barbier, Carine, Levente, Juhasz, Klaus, Maxim, Pötschke, Petra

The aim of this study is to reveal the influences of carbon nanotube (CNT) and polymer type as well as CNT content on electrical conductivity, Seebeck coefficient (S), and the resulting power factor (PF) and figure of merit (ZT). Different commercially available and laboratory made CNTs were used to prepare melt-mixed composites on a small scale. CNTs typically lead to p-type composites with positive S-values. This was found for the two types of multi-walled CNTs (MWCNT) whereby higher Seebeck coefficient in the corresponding buckypapers resulted in higher values also in the composites. Nitrogen doped MWCNTs resulted in negative S-values in the buckypapers as well as in the polymer composites. When using single-walled CNTs (SWCNTs) with a positive S-value in the buckypapers, positive (polypropylene (PP), polycarbonate (PC), poly (vinylidene fluoride) (PVDF), and poly(butylene terephthalate) (PBT)) or negative (polyamide 66 (PA66), polyamide 6 (PA6), partially aromatic polyamide (PARA), acrylonitrile butadiene styrene (ABS)) S-values were obtained depending on the matrix polymer and SWCNT type. The study shows that the direct production of n-type melt-mixed polymer composites from p-type commercial SWCNTs with relatively high Seebeck coefficients is possible. The highest Seebeck coefficients obtained in this study were 66.4 µV/K (PBT/7 wt % SWCNT Tuball) and −57.1 µV/K (ABS/0.5 wt % SWCNT Tuball) for p-and n-type composites, respectively. The highest power factor and ZT of 0.28 µW/m·K2 and 3.1 × 10−4, respectively, were achieved in PBT with 4 wt % SWCNT Tuball.

Loading...
Thumbnail Image
Item

Thermal conductivity and electrical resistivity of melt-mixed polypropylene composites containing mixtures of carbon-based fillers

2019, Krause, Beate, Rzeczkowski, Piotr, Pötschke, Petra

Melt-mixed composites based on polypropylene (PP) with various carbon-based fillers were investigated with regard to their thermal conductivity and electrical resistivity. The composites were filled with up to three fillers by selecting combinations of graphite nanoplatelets (GNP), carbon fibers (CF), carbon nanotubes (CNT), carbon black (CB), and graphite (G) at a constant filler content of 7.5 vol%. The thermal conductivity of PP (0.26 W/(m·K)) improved most using graphite nanoplatelets, whereas electrical resistivity was the lowest when using multiwalled CNT. Synergistic effects could be observed for different filler combinations. The PP composite, which contains a mixture of GNP, CNT, and highly structured CB, simultaneously had high thermal conductivity (0.5 W/(m·K)) and the lowest electrical volume resistivity (4 Ohm·cm).

Loading...
Thumbnail Image
Item

Hybrid conductive filler/polycarbonate composites with enhanced electrical and thermal conductivities for bipolar plate applications

2019, Naji, Ahmed, Krause, Beate, Pötschke, Petra, Ameli, Amir

Conductive polymer composites (CPCs) with high electrical and thermal conductivities are demanded for bipolar plates of fuel cells. In this work, CPCs of polycarbonate (PC) filled with carbon nanotube (CNT), carbon fiber (CF), graphite (G), and their double and triple hybrids were prepared using solution casting method followed by compression molding. The results showed that the electrical percolation thresholds for the PC-CNT and PC-CF were ~1 wt% and ~10 wt%, respectively, while no clear threshold was found for PC-G composites. Addition of 3–5 wt% CNT improved the electrical conductivity of PC-CF and PC-G systems up to 6 orders of magnitude and enhanced the thermal conductivity as much as 65%. The results of triple hybrid CPCs (with constant loading of 63 wt%) indicated that the combination of highest electrical and thermal conductivities is achieved when the CF and CNT loadings were near their percolation thresholds. Therefore, a triple filler system of 3 wt% CNT, 10 wt% CF, and 50 wt% G resulted in a composite with the through-plane and in-plane electrical conductivity, and thermal conductivity values of 12.8 S/cm, 8.3 S/cm, and 1.7 W/m•K, respectively. The results offer a combination of properties surpassing the existing values and suitable for high-conductivity applications such as bipolar plates. POLYM. COMPOS., 40:3189–3198, 2019. © 2018 Society of Plastics Engineers.

Loading...
Thumbnail Image
Item

Interfacial chemistry using a bifunctional coupling agent for enhanced electrical properties of carbon nanotube based composites

2013, Socher, Robert, Jakisch, Lothar, Krause, Beate, Oertel, Ulrich, Voit, Brigitte, Pötschke, Petra

A bifunctional coupling agent (BCA) containing one oxazoline and one benzoxazinone group was applied to promote a reaction between polyamide 12 (PA12) and multiwalled carbon nanotubes (MWCNTs) during melt mixing. With this modification, the MWCNT content needed for the electrical percolation was significantly reduced by more than a factor of three. For amino functionalized MWCNT-PA12 composites adding 1 wt.% BCA electrical percolation was reached at only 0.37 wt.% MWCNTs compared to 1.0 wt.% without BCA. With the help of a model reaction, the covalent attachment of the BCA to the MWCNTs could be shown by thermogravimetric analysis (TGA) and via fluorescence spectroscopy. Model compounds were applied containing either only the oxazoline or the benzoxazinone group to show that the better electrical properties in the PA12-MWCNT composites were a result of a covalent bond between the polymer and the nanotube which only takes place when the BCA was used. In addition, significantly higher electrical conductivity values were obtained by the addition of BCA as well with amino functionalized as with nonmodified commercial MWCNTs. This surprising result was attributed to the significant hydroxy group content on the surface of those commercial MWCNTs. © 2013 Elsevier Ltd. All rights reserved.

Loading...
Thumbnail Image
Item

Melt mixed PCL/MWCNT composites prepared at different rotation speeds: Characterization of rheological, thermal, and electrical properties, molecular weight, MWCNT macrodispersion, and MWCNT length distribution

2013, Pötschke, Petra, Villmow, Tobias, Krause, Beate

Composites of poly(caprolactone) (PCL) and 0.5 wt.% multiwalled carbon nanotubes (MWCNT) were prepared by melt-mixing in a conical twin-screw micro-compounder by varying the rotation speed between 25 and 400 rpm at constant mixing time and temperature. The state of dispersion analyzed by light microscopy was improved with increasing rotation speed but levels off starting at about 100 rpm. PCL molecular weight as well as crystallization and melting behavior did show only insignificant difference when varying the rotation speed. Concerning melt rheological properties, storage modulus G′ and complex viscosity η* at 0.1 rad/s increased up to a rotation speed of about 75 rpm illustrating improved dispersion. When further increasing the speed G′ and η* decreased which was attributed to more pronounced nanotube shortening as quantified by TEM measurements. Both effects - improved dispersion and nanotube shortening - are also reflected in the electrical resistivity values of compression molded samples which show a minimum of resistivity at the rotation speed of 75 rpm corresponding to a specific mechanical energy input of 0.47 kWh/kg. © 2013 Elsevier Ltd. All rights reserved.

Loading...
Thumbnail Image
Item

Electrically Conductive Polyetheretherketone Nanocomposite Filaments: From Production to Fused Deposition Modeling

2018-8-18, Gonçalves, Jordana, Lima, Patrícia, Krause, Beate, Pötschke, Petra, Lafont, Ugo, Gomes, José R., Abreu, Cristiano S., Paiva, Maria C., Covas, José A.

The present work reports the production and characterization of polyetheretherketone (PEEK) nanocomposite filaments incorporating carbon nanotubes (CNT) and graphite nanoplates (GnP), electrically conductive and suitable for fused deposition modeling (FDM) processing. The nanocomposites were manufactured by melt mixing and those presenting electrical conductivity near 10 S/m were selected for the production of filaments for FDM. The extruded filaments were characterized for mechanical and thermal conductivity, polymer crystallinity, thermal relaxation, nanoparticle dispersion, thermoelectric effect, and coefficient of friction. They presented electrical conductivity in the range of 1.5 to 13.1 S/m, as well as good mechanical performance and higher thermal conductivity compared to PEEK. The addition of GnP improved the composites' melt processability, maintained the electrical conductivity at target level, and reduced the coefficient of friction by up to 60%. Finally, three-dimensional (3D) printed test specimens were produced, showing a Young's modulus and ultimate tensile strength comparable to those of the filaments, but a lower strain at break and electrical conductivity. This was attributed to the presence of large voids in the part, revealing the need for 3D printing parameter optimization. Finally, filament production was up-scaled to kilogram scale maintaining the properties of the research-scale filaments.