Search Results

Now showing 1 - 10 of 20
Loading...
Thumbnail Image
Item

Lightweight polymer-carbon composite current collector for lithium-ion batteries

2020, Fritsch, Marco, Coeler, Matthias, Kunz, Karina, Krause, Beate, Marcinkowski, Peter, Pötschke, Petra, Wolter, Mareike, Michaelis, Alexander

A hermetic dense polymer-carbon composite-based current collector foil (PCCF) for lithium-ion battery applications was developed and evaluated in comparison to state-of-the-art aluminum (Al) foil collector. Water-processed LiNi0.5Mn1.5O4 (LMNO) cathode and Li4Ti5O12 (LTO) anode coatings with the integration of a thin carbon primer at the interface to the collector were prepared. Despite the fact that the laboratory manufactured PCCF shows a much higher film thickness of 55 µm compared to Al foil of 19 µm, the electrode resistance was measured to be by a factor of 5 lower compared to the Al collector, which was attributed to the low contact resistance between PCCF, carbon primer and electrode microstructure. The PCCF-C-primer collector shows a sufficient voltage stability up to 5 V vs. Li/Li+ and a negligible Li-intercalation loss into the carbon primer. Electrochemical cell tests demonstrate the applicability of the developed PCCF for LMNO and LTO electrodes, with no disadvantage compared to state-of-the-art Al collector. Due to a 50% lower material density, the lightweight and hermetic dense PCCF polymer collector offers the possibility to significantly decrease the mass loading of the collector in battery cells, which can be of special interest for bipolar battery architectures. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

Blend Structure and n-Type Thermoelectric Performance of PA6/SAN and PA6/PMMA Blends Filled with Singlewalled Carbon Nanotubes

2021-4-28, Krause, Beate, Liguoro, Alice, Pötschke, Petra

The present study investigates how the formation of melt-mixed immiscible blends based on PA6/SAN and PA6/PMMA filled with single walled nanotubes (SWCNTs) affects the thermoelectric (TE) properties. In addition to the detailed investigation of the blend morphology with compositions between 100/0 wt.% and 50/50 wt.%, the thermoelectric properties are investigated on blends with different SWCNT concentrations (0.25–3.0 wt.%). Both PA6 and the blend composites with the used type of SWCNTs showed negative Seebeck coefficients. It was shown that the PA6 matrix polymer, in which the SWCNTs are localized, mainly influenced the thermoelectric properties of blends with high SWCNT contents. By varying the blend composition, an increase in the absolute Seebeck coefficient, power factor (PF), and figure of merit (ZT) was achieved compared to the PA6 composite which is mainly related to the selective localization and enrichment of SWCNTs in the PA6 matrix at constant SWCNT loading. The maximum PFs achieved were 0.22 µW/m·K2 for PA6/SAN/SWCNT 70/30/3 wt.% and 0.13 µW/m·K2 for PA6/PMMA/SWCNT 60/40/3 wt.% compared to 0.09 µW/m·K2 for PA6/3 wt.% SWCNT which represent increases to 244% and 144%, respectively. At higher PMMA or SAN concentration, the change from matrix-droplet to a co-continuous morphology started, which, despite higher SWCNT enrichment in the PA6 matrix, disturbed the electrical conductivity, resulting in reduced PFs with still increasing Seebeck coefficients. At SWCNT contents between 0.5 and 3 wt.% the increase in the absolute Seebeck coefficient was compensated by lower electrical conductivity resulting in lower PF and ZT as compared to the PA6 composites.

Loading...
Thumbnail Image
Item

Nitrogen-Doped Carbon Nanotube/Polypropylene Composites with Negative Seebeck Coefficient

2020, Krause, Beate, Konidakis, Ioannis, Arjmand, Mohammad, Sundararaj, Uttandaraman, Fuge, Robert, Liebscher, Marco, Hampel, Silke, Klaus, Maxim, Serpetzoglou, Efthymis, Stratakis, Emmanuel, Pötschke, Petra

This study describes the application of multi-walled carbon nanotubes that were nitrogen-doped during their synthesis (N-MWCNTs) in melt-mixed polypropylene (PP) composites. Different types of N-MWCNTs, synthesized using different methods, were used and compared. Four of the five MWCNT grades showed negative Seebeck coefficients (S), indicating n-type charge carrier behavior. All prepared composites (with a concentration between 2 and 7.5 wt% N-MWCNTs) also showed negative S values, which in most cases had a higher negative value than the corresponding nanotubes. The S values achieved were between 1.0 µV/K and −13.8 µV/K for the N-MWCNT buckypapers or powders and between −4.7 µV/K and −22.8 µV/K for the corresponding composites. With a higher content of N-MWCNTs, the increase in electrical conductivity led to increasing values of the power factor (PF) despite the unstable behavior of the Seebeck coefficient. The highest power factor was achieved with 4 wt% N-MWCNT, where a suitable combination of high electrical conductivity and acceptable Seebeck coefficient led to a PF value of 6.1 × 10−3 µW/(m·K2). First experiments have shown that transient absorption spectroscopy (TAS) is a useful tool to study the carrier transfer process in CNTs in composites and to correlate it with the Seebeck coefficient.

Loading...
Thumbnail Image
Item

Mixed Carbon Nanomaterial/Epoxy Resin for Electrically Conductive Adhesives

2020, Lopes, Paulo E., Moura, Duarte, Hilliou, Loic, Krause, Beate, Pötschke, Petra, Figueiredo, Hugo, Alves, Ricardo, Lepleux, Emmanuel, Pacheco, Louis, Paiva, Maria C.

The increasing complexity of printed circuit boards (PCBs) due to miniaturization, increased the density of electronic components, and demanding thermal management during the assembly triggered the research of innovative solder pastes and electrically conductive adhesives (ECAs). Current commercial ECAs are typically based on epoxy matrices with a high load (>60%) of silver particles, generally in the form of microflakes. The present work reports the production of ECAs based on epoxy/carbon nanomaterials using carbon nanotubes (single and multi-walled) and exfoliated graphite, as well as hybrid compositions, within a range of concentrations. The composites were tested for morphology (dispersion of the conductive nanomaterials), electrical and thermal conductivity, rheological characteristics and deposition on a test PCB. Finally, the ECA’s shelf life was assessed by mixing all the components and conductive nanomaterials, and evaluating the cure of the resin before and after freezing for a time range up to nine months. The ECAs produced could be stored at −18 °C without affecting the cure reaction.

Loading...
Thumbnail Image
Item

High-Performance, Lightweight, and Flexible Thermoplastic Polyurethane Nanocomposites with Zn2+-Substituted CoFe2O4 Nanoparticles and Reduced Graphene Oxide as Shielding Materials against Electromagnetic Pollution

2021-10-11, Anju, Yadav, Raghvendra Singh, Pötschke, Petra, Pionteck, Jürgen, Krause, Beate, Kuřitka, Ivo, Vilcakova, Jarmila, Skoda, David, Urbánek, Pavel, Machovsky, Michal, Masař, Milan, Urbánek, Michal, Jurca, Marek, Kalina, Lukas, Havlica, Jaromir

The development of flexible, lightweight, and thin high-performance electromagnetic interference shielding materials is urgently needed for the protection of humans, the environment, and electronic devices against electromagnetic radiation. To achieve this, the spinel ferrite nanoparticles CoFe2O4 (CZ1), Co0.67Zn0.33Fe2O4 (CZ2), and Co0.33Zn0.67Fe2O4 (CZ3) were prepared by the sonochemical synthesis method. Further, these prepared spinel ferrite nanoparticles and reduced graphene oxide (rGO) were embedded in a thermoplastic polyurethane (TPU) matrix. The maximum electromagnetic interference (EMI) total shielding effectiveness (SET) values in the frequency range 8.2-12.4 GHz of these nanocomposites with a thickness of only 0.8 mm were 48.3, 61.8, and 67.8 dB for CZ1-rGO-TPU, CZ2-rGO-TPU, and CZ3-rGO-TPU, respectively. The high-performance electromagnetic interference shielding characteristics of the CZ3-rGO-TPU nanocomposite stem from dipole and interfacial polarization, conduction loss, multiple scattering, eddy current effect, natural resonance, high attenuation constant, and impedance matching. The optimized CZ3-rGO-TPU nanocomposite can be a potential candidate as a lightweight, flexible, thin, and high-performance electromagnetic interference shielding material.

Loading...
Thumbnail Image
Item

Boron doping of SWCNTs as a way to enhance the thermoelectric properties of melt‐mixed polypropylene/SWCNT composites

2020, Krause, Beate, Bezugly, Viktor, Khavrus, Vyacheslav, Ye, Liu, Cuniberti, Gianaurelio, Pötschke, Petra

Composites based on the matrix polymer polypropylene (PP) filled with single‐walled carbon nanotubes (SWCNTs) and boron‐doped SWCNTs (B‐SWCNTs) were prepared by melt‐mixing to analyze the influence of boron doping of SWCNTs on the thermoelectric properties of these nanocomposites. It was found that besides a significantly higher Seebeck coefficient of B‐SWCNT films and powder packages, the values for B‐SWCNT incorporated in PP were higher than those for SWCNTs. Due to the higher electrical conductivity and the higher Seebeck coefficients of B‐SWCNTs, the power factor (PF) and the figure of merit (ZT) were also higher for the PP/B‐SWCNT composites. The highest value achieved in this study was a Seebeck coefficient of 59.7 μV/K for PP with 0.5 wt% B‐SWCNT compared to 47.9 μV/K for SWCNTs at the same filling level. The highest PF was 0.78 μW/(m∙K2) for PP with 7.5 wt% B‐SWCNT. SWCNT macro‐ and microdispersions were found to be similar in both composite types, as was the very low electrical percolation threshold between 0.075 and 0.1 wt% SWCNT. At loadings between 0.5 and 2.0 wt%, B‐SWCNT‐based composites have one order of magnitude higher electrical conductivity than those based on SWCNT. The crystallization behavior of PP is more strongly influenced by B‐SWCNTs since their composites have higher crystallization temperatures than composites with SWCNTs at a comparable degree of crystallinity. Boron doping of SWCNTs is therefore a suitable way to improve the electrical and thermoelectric properties of composites. © 2020 by the authors.

Loading...
Thumbnail Image
Item

CuxCo1-xFe2O4 (x = 0.33, 0.67, 1) Spinel Ferrite Nanoparticles Based Thermoplastic Polyurethane Nanocomposites with Reduced Graphene Oxide for Highly Efficient Electromagnetic Interference Shielding

2022-2-26, Anju, Yadav, Raghvendra Singh, Pötschke, Petra, Pionteck, Jürgen, Krause, Beate, Kuřitka, Ivo, Vilčáková, Jarmila, Škoda, David, Urbánek, Pavel, Machovský, Michal, Masař, Milan, Urbánek, Michal

CuxCo1-x Fe2O4 (x = 0.33,0.67,1)-reduced graphene oxide (rGO)-thermoplastic polyurethane (TPU) nanocomposites exhibiting highly efficient electromagnetic interference (EMI) shielding were prepared by a melt-mixing approach using a microcompounder. Spinel ferrite Cu0.33Co0.67Fe2O4 (Cu-CoF1), Cu0.67Co0.33Fe2O4 (CuCoF2) and CuFe2O4 (CuF3) nanoparticles were synthesized using the sonochemical method. The CuCoF1 and CuCoF2 exhibited typical ferromagnetic features, whereas CuF3 displayed superparamagnetic characteristics. The maximum value of EMI total shielding effectiveness (SEt) was noticed to be 42.9 dB, 46.2 dB, and 58.8 dB for CuCoF1-rGO-TPU, CuCoF2-rGO-TPU, and CuF3-rGO-TPU nanocomposites, respectively, at a thickness of 1 mm. The highly efficient EMI shielding performance was attributed to the good impedance matching, conductive, dielectric, and magnetic loss. The demonstrated nanocomposites are promising candidates for a lightweight, flexible, and highly efficient EMI shielding material.

Loading...
Thumbnail Image
Item

The force of MOFs: The potential of switchable metal-organic frameworks as solvent stimulated actuators

2020, Freund, Pascal, Senkovska, Irena, Zheng, Bin, Bon, Volodymyr, Krause, Beate, Maurin, Guillaume, Kaskel, Stefan

We evaluate experimentally the force exerted by flexible metal-organic frameworks through expansion for a representative model system, namely MIL-53(Al). The results obtained are compared with data collected from intrusion experiments while molecular simulations are performed to shed light on the re-opening of the guest-loaded structure. The critical impact of the transition stimulating medium on the magnitude of the expansion force is demonstrated.

Loading...
Thumbnail Image
Item

Surface modification of MWCNT and its influence on properties of paraffin/MWCNT nanocomposites as phase change material

2020, Avid, Arezoo, Jafari, Seyed Hassan, Khonakdar, Hossein Ali, Ghaffari, Mehdi, Krause, Beate, Pötschke, Petra

Multiwalled carbon nanotubes (MWCNTs) were modified by an organo-silane in order to improve their dispersion state and stability in paraffin wax. A family of paraffin-based phase change material (PCM) composites filled with MWCNTs was prepared with different loadings (0, 0.1, 0.5, and 1 wt%) of pristine MWCNTs and organo-silane modified MWCNTs (Si-MWCNT). Structural analyses were performed by means of Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and rheological studies using temperature sweeps. Moreover, phase change transition temperatures and heat of fusion as well as thermal and electrical conductivities of the developed PCM nanocomposites were determined. The SEM micrographs and FTIR absorption bands appearing at approximately 1038 and 1112 cm−1 confirmed the silane modification. Differential scanning calorimetery (DSC) results indicate that the presence of Si-MWCNTs leads to slightly favorable enhancement in the energy storage capacity at the maximum loading. It was also shown that the thermal conductivity of the PCM nanocomposites, in both solid and liquid phases, increased with increasing the MWCNT content independent of the kind of MWCNTs by up to about 30% at the maximum loading of MWCNTs. In addition, the modification of MWCNTs made the samples completely electrically nonconductive, and the electrical surface resistivity of the PCMs containing pristine MWCNTs decreased with increasing MWCNTs loading. Furthermore, the rheological assessment under consecutive cyclic phase change demonstrated that the samples containing modified MWCNTs are more stable compared to the PCM containing pristine MWCNTs. © 2019 Wiley

Loading...
Thumbnail Image
Item

Electrically conductive and piezoresistive polymer nanocomposites using multiwalled carbon nanotubes in a flexible copolyester: Spectroscopic, morphological, mechanical and electrical properties

2022, Dhakal, Kedar Nath, Khanal, Santosh, Krause, Beate, Lach, Ralf, Grellmann, Wolfgang, Le, Hai Hong, Das, Amit, Wießner, Sven, Heinrich, Gert, Pionteck, Jürgen, Adhikari, Rameshwar

Nanocomposites of multiwalled carbon nanotubes (MWCNTs) with poly(butylene adipate-co-terephthalate) (PBAT), a flexible aromatic–aliphatic copolyester, were prepared by melt mixing followed by compression moulding to investigate their spectroscopic, morphological, mechanical and electrical properties. A comparison of the Fourier transform infrared (FTIR) spectra of the neat polymer matrix and the composites showed no difference, implying a physical mixing of the matrix and the filler. A morphological investigation revealed the formation of a continuous and interconnected MWCNT network embedded in the polymer matrix with partial agglomeration. Increasing Martens hardness and indentation modulus and decreasing maximum indentation depth with increasing filler concentration demonstrated the reinforcement of the polymer by the MWCNTs. A volume resistivity of 4.6 × 105 Ω cm of the materials was achieved by the incorporation of only 1 wt.-% of the MWCNTs, which confirmed a quite low percolation threshold (below 1 wt.-%) of the nanocomposites. The electrical volume resistivity of the flexible nanocomposites was achieved up to 1.6 × 102 Ω cm, depending on the filler content. The elongation at the break of the nanocomposites at 374% and the maximum relative resistance changes (ΔR/R0) of 20 and 200 at 0.9 and 7.5% strains, respectively, were recorded in the nanocomposites (3 wt.-% MWCNTs) within the estimated volume resistivity range. A cyclic strain experiment shows the most stable and reproducible ΔR/R0 values in the 2%–5% strain range. The electrical conductivity and piezoresistivity of the investigated nanocomposites in correlation with the mechanical properties and observed morphology make them applicable for low-strain deformation-sensing.