Search Results

Now showing 1 - 2 of 2
  • Item
    Blend Structure and n-Type Thermoelectric Performance of PA6/SAN and PA6/PMMA Blends Filled with Singlewalled Carbon Nanotubes
    (Basel : MDPI, 2021-4-28) Krause, Beate; Liguoro, Alice; Pötschke, Petra
    The present study investigates how the formation of melt-mixed immiscible blends based on PA6/SAN and PA6/PMMA filled with single walled nanotubes (SWCNTs) affects the thermoelectric (TE) properties. In addition to the detailed investigation of the blend morphology with compositions between 100/0 wt.% and 50/50 wt.%, the thermoelectric properties are investigated on blends with different SWCNT concentrations (0.25–3.0 wt.%). Both PA6 and the blend composites with the used type of SWCNTs showed negative Seebeck coefficients. It was shown that the PA6 matrix polymer, in which the SWCNTs are localized, mainly influenced the thermoelectric properties of blends with high SWCNT contents. By varying the blend composition, an increase in the absolute Seebeck coefficient, power factor (PF), and figure of merit (ZT) was achieved compared to the PA6 composite which is mainly related to the selective localization and enrichment of SWCNTs in the PA6 matrix at constant SWCNT loading. The maximum PFs achieved were 0.22 µW/m·K2 for PA6/SAN/SWCNT 70/30/3 wt.% and 0.13 µW/m·K2 for PA6/PMMA/SWCNT 60/40/3 wt.% compared to 0.09 µW/m·K2 for PA6/3 wt.% SWCNT which represent increases to 244% and 144%, respectively. At higher PMMA or SAN concentration, the change from matrix-droplet to a co-continuous morphology started, which, despite higher SWCNT enrichment in the PA6 matrix, disturbed the electrical conductivity, resulting in reduced PFs with still increasing Seebeck coefficients. At SWCNT contents between 0.5 and 3 wt.% the increase in the absolute Seebeck coefficient was compensated by lower electrical conductivity resulting in lower PF and ZT as compared to the PA6 composites.
  • Item
    Characterization of electron beam irradiated polypropylene: Influence of irradiation temperature on molecular and rheological properties
    (Hoboken, NJ [u.a.] : Wiley InterScience, 2006) Krause, Beate; Voigt, Dieter; Häuβler, Liane; Auhl, Dietmar; Münstedt, Helmut
    The aim of the investigations was to analyze the influence of the temperature during the irradiation process of polypropylene on the molar mass, the formation of long chain branching and the final branching topology. A linear isotactic polypropylene homopolymer was modified by electron beam irradiation at different temperatures, with two irradiation doses to insert long chain branching. The Samples were analyzed by size exclusion chromatography coupled with a multiangle laser light scattering detector, by differential scanning calorimetry, and by shear and elongational rheology. The shear and elongational flow behavior isdiscussed in terms of the influence of molecular parameters and used to analyze the topology of the irradiated samples. With increasing temperature, a slight reduction of the molar mass, an increase of long chain branching and an increase of crystallization temperature were found. © 2006 Wiley Periodicals, Inc.