Search Results

Now showing 1 - 2 of 2
  • Item
    A promising approach to low electrical percolation threshold in PMMA nanocomposites by using MWCNT-PEO predispersions
    (Oxford : Elsevier Science, 2016) Mir, Seyed Mohammad; Jafari, Seyed Hassan; Khonakdar, Hossein Ali; Krause, Beate; Pötschke, Petra; Taheri Qazvini, Nader
    Electrical conductive poly(methyl methacrylate) (PMMA) nanocomposites with low percolation threshold are very challenging to be prepared. Here, we show that the miscibility between poly(ethylene oxide) (PEO) as matrix for predispersions of multi-walled carbon nanotubes (MWCNTs) and PMMA represents an efficient approach to achieve very low electrical percolation threshold. PMMA/PEO-MWCNTs nanocomposites were prepared by a two-step solution casting method involving pre-mixing of MWCNTs with PEO and then mixing of PEO-MWCNTs with PMMA, resulting in a PMMA/PEO ratio of 80/20 wt%. The electrical percolation threshold (EPT) value was determined to be ~ 0.07 wt% which is significantly lower than most of the reported EPT values in the literature for PMMA/CNT composites. The very low electrical percolation threshold was attributed to the effectual role of PEO in self-assembly of secondary structures of nanotubes into an electrically conductive network. This was further confirmed by transmission electron microscopy and by comparing the obtained EPT value with the prediction of the excluded volume model in which statistical percolation threshold is defined based on uniform distribution of high-aspect ratio sticks in a matrix. Moreover, based on UV–Vis measurements and linear viscoelastic rheological measurements, optical and rheological percolation thresholds were obtained at nearly 0.01 wt% and 0.5 wt%, respectively.
  • Item
    Extruded polycarbonate/Di-Allyl phthalate composites with ternary conductive filler system for bipolar plates of polymer electrolyte membrane fuel cells
    (Bristol : IOP Publ., 2019) Naji, Ahmed; Krause, Beate; Pötschke, Petra; Ameli, Amir
    Here, we report multifunctional polycarbonate (PC)-based conductive polymer composites (CPCs) with outstanding performance manufactured by a simple extrusion process and intended for use in bipolar plate (BPP) applications in polymer electrolyte membrane (PEM) fuel cells. CPCs were developed using a ternary conductive filler system containing carbon nanotube (CNT), carbon fiber (CF), and graphite (G) and by introducing di-allyl phthalate (DAP) as a plasticizer to PC matrix. The samples were fabricated using twin-screw extrusion followed by compression molding and the microstructure, electrical conductivity, thermal conductivity, and mechanical properties were investigated. The results showed a good dispersion of the fillers with some degree of interconnection between dissimilar fillers. The addition of DAP enhanced the electrical conductivity and tensile strength of the CPCs. Due to its plasticizing effect, DAP reduced the processing temperature by 75 °C and facilitated the extrusion of CPCs with filler loads as high as 63 wt% (3 wt% CNT, 30 wt% CF, 30 wt% G). Consequently, CPCs with the through-plane electrical, in-plane electrical and thermal conductivities and tensile strength of 4.2 S cm-1, 34.3 S cm-1, 2.9 W m-1 K-1, and 75.4 MPa, respectively, were achieved. This combination of properties indicates the potential of PC-based composites enriched with hybrid fillers and plasticizers as an alternative material for BPP application.