Search Results

Now showing 1 - 2 of 2
  • Item
    Influence of feeding conditions in twin-screw extrusion of PP/MWCNT composites on electrical and mechanical properties
    (Barking : Elsevier, 2011) Müller, Michael Thomas; Krause, Beate; Kretzschmar, Bernd; Pötschke, Petra
    The influence of feeding conditions of multiwalled carbon nanotube (MWCNT) materials, namely Baytubes® C150P and Nanocyl™ NC7000, into polypropylene (PP) was investigated with respect to achieving suitable nanotube dispersion, high electrical conductivity, and good mechanical properties. Both MWCNT materials were fed at selected concentrations either in the hopper of the twin-screw extruder or using a side feeder under otherwise identical extrusion conditions (rotation speed, throughput, temperature profile) using a Berstorff ZE 25 twin-screw extruder. Afterwards, injection molding was performed under identical conditions. The results indicate that the more compact Baytubes® C150P agglomerates should be added into the hopper, as the dispersion assessed by light microscopy is better, electrical resistivities measured on compression and injection molded samples are lower, and elastic modulus, yield strength and impact strength are higher as compared to side feeding. On the other hand, for the more loosely packed Nanocyl™ NC7000 agglomerates, addition using the side feeder leads to better dispersion, lower electrical resistivity, and higher mechanical properties. © 2011 Elsevier Ltd.
  • Item
    Percolation behaviour of multiwalled carbon nanotubes of altered length and primary agglomerate morphology in melt mixed isotactic polypropylene-based composites
    (Barking : Elsevier, 2011) Menzer, Katharina; Krause, Beate; Boldt, Regine; Kretzschmar, Bernd; Weidisch, Roland; Pötschke, Petra
    The effect of ball milling on the structural characteristics and further on the dispersion and percolation behaviour of multiwalled carbon nanotubes (MWCNTs) in melt mixed composites using a maleic anhydride modified isotactic polypropylene as matrix was investigated. TEM and SEM revealed that ball milled nanotubes were considerably shorter and showed a compact primary agglomerate morphology compared to the as-synthesised MWCNTs. At macro scale ball milled MWCNTs were found to be better dispersed, whereas at sub-micron scale the states of dispersion of both nanotube materials were comparable. The differences in the composite morphologies as well as in the composites electrical and rheological percolation behaviour were assigned to the altered MWCNT structure due to ball milling treatment. The dispersibility of ball milled MWCNTs was restricted due to their more compact agglomerate morphology. Furthermore, the ability to form percolated network structures was restrained by their shorter length and, again, their compact primary agglomerates. An effective agglomerate interaction radius depending on the nanotube structural characteristics, length and agglomerate morphology, is suggested in order to explain the experimental findings. © 2011 Elsevier Ltd.