Search Results

Now showing 1 - 4 of 4
  • Item
    Corrigendum: Air quality and health implications of 1.5 °C–2 °C climate pathways under considerations of ageing population: a multi-model scenario analysis (2021 Environ. Res. Lett. 16 045005)
    (Bristol : IOP Publ., 2021) Rafaj, Peter; Kiesewetter, Gregor; Krey, Volker; Schoepp, Wolfgang; Bertram, Christoph; Drouet, Laurent; Fricko, Oliver; Fujimori, Shinichiro; Harmsen, Mathijs; Hilaire, Jérôme; Huppmann, Daniel; Klimont, Zbigniew; Kolp, Peter; Aleluia Reis, Lara; van Vuuren, Detlef
    We have identified an error in the text of section 3.3 where the health co-benefits of 1.5 °C + MFR scenario in the whole of Asia are compared to the reference. In the last paragraph of the section 3.3 (page 11), the manuscript states that 'Across the Asia domain, this reduction is approximately 2.5-3 million cases or 40%-51% depending on the IAM used'. Unfortunately, the numbers quoted here were accidentally taken from a sensitivity analysis using different integrated exposure-response curves (GBD-2010, obtained from Global Burden of Disease Collaborative Network 2013), which have not been used in the results shown in the paper-our results are based on the GBD-2013 version, reported by Forouzanfar et al (2015). The correct statement is: 'Across the Asia domain, this reduction is approximately 1.2-1.5 million cases or 33%-42% depending on the IAM used'. The same correction applies to the statement in the Conclusions section 5 (4th paragraph, page 14), which should read: 'The 1.5 °C + MFR scenario decreases premature deaths by 33%-42% across Asia, compared to NPi'.
  • Item
    Energy system developments and investments in the decisive decade for the Paris Agreement goals
    (Bristol : IOP Publ., 2021-6-29) Bertram, Christoph; Riahi, Keywan; Hilaire, Jérôme; Bosetti, Valentina; Drouet, Laurent; Fricko, Oliver; Malik, Aman; Pupo Nogueira, Larissa; van der Zwaan, Bob; van Ruijven, Bas; van Vuuren, Detlef; Weitzel, Matthias; Dalla Longa, Francesco; de Boer, Harmen-Sytze; Emmerling, Johannes; Fosse, Florian; Fragkiadakis, Kostas; Harmsen, Mathijs; Keramidas, Kimon; Kishimoto, Paul Natsuo; Kriegler, Elmar; Krey, Volker; Paroussos, Leonidas; Saygin, Deger; Vrontisi, Zoi; Luderer, Gunnar
    The Paris Agreement does not only stipulate to limit the global average temperature increase to well below 2 °C, it also calls for 'making finance flows consistent with a pathway towards low greenhouse gas emissions'. Consequently, there is an urgent need to understand the implications of climate targets for energy systems and quantify the associated investment requirements in the coming decade. A meaningful analysis must however consider the near-term mitigation requirements to avoid the overshoot of a temperature goal. It must also include the recently observed fast technological progress in key mitigation options. Here, we use a new and unique scenario ensemble that limit peak warming by construction and that stems from seven up-to-date integrated assessment models. This allows us to study the near-term implications of different limits to peak temperature increase under a consistent and up-to-date set of assumptions. We find that ambitious immediate action allows for limiting median warming outcomes to well below 2 °C in all models. By contrast, current nationally determined contributions for 2030 would add around 0.2 °C of peak warming, leading to an unavoidable transgression of 1.5 °C in all models, and 2 °C in some. In contrast to the incremental changes as foreseen by current plans, ambitious peak warming targets require decisive emission cuts until 2030, with the most substantial contribution to decarbonization coming from the power sector. Therefore, investments into low-carbon power generation need to increase beyond current levels to meet the Paris goals, especially for solar and wind technologies and related system enhancements for electricity transmission, distribution and storage. Estimates on absolute investment levels, up-scaling of other low-carbon power generation technologies and investment shares in less ambitious scenarios vary considerably across models. In scenarios limiting peak warming to below 2 °C, while coal is phased out quickly, oil and gas are still being used significantly until 2030, albeit at lower than current levels. This requires continued investments into existing oil and gas infrastructure, but investments into new fields in such scenarios might not be needed. The results show that credible and effective policy action is essential for ensuring efficient allocation of investments aligned with medium-term climate targets.
  • Item
    Early transformation of the Chinese power sector to avoid additional coal lock-in
    (Bristol : IOP Publ., 2020) Wang, Huan; Chen, Wenying; Bertram, Christoph; Malik, Aman; Kriegler, Elmar; Luderer, Gunnar; Després, Jacques; Jiang, Kejun; Krey, Volker
    Emission reduction from the coal-dominated power sector is vital for achieving China's carbon mitigation targets. Although the coal expansion has been slowed down due to the cancellation of and delay in new construction, coal-based power was responsible for over one third of China's energy-related CO2 emissions by 2018. Moreover, with a technical lifetime of over 30 years, current investment in coal-based power could hinder CO2 mitigation until 2050. Therefore, it is important to examine whether the current coal-based power planning aligns with the long-term climate targets. This paper introduces China's Nationally Determined Contribution (NDC) goals and an ambitious carbon budget along with global pathways well-below 2 degrees that are divided into five integrated assessment models, which are two national and three global models. We compare the models' results with bottom-up data on current capacity additions and expansion plans to examine if the NDC targets are in line with 2-degree pathways. The key findings are: 1. NDC goals alone are unlikely to lead to significant reductions in coal-based power generation. On the contrary, more plants may be built before 2030; 2. this would require an average of 187–261 TWh of annual coal-based power capacity reduction between 2030 and 2050 to achieve a 2 °C compatible trajectory, which would lead to the stranding of large-scale coal-based power plants; 3. if the reduction in coal power can be brought forward to 2020, the average annual coal-based power reduction required would be 104–155 TWh from 2020 to 2050 and the emissions could peak earlier; 4. early regulations in coal-based power would require accelerated promotion of alternatives between 2020 and 2030, with nuclear, wind and solar power expected to be the most promising alternatives. By presenting the stranding risk and viability of alternatives, we suggest that both the government and enterprises should remain cautious about making new investment in coal-based power sector.
  • Item
    Integrated Solutions for the Water-Energy-Land Nexus: Are Global Models Rising to the Challenge?
    (Basel : MDPI, 2019) Johnson, Nils; Burek, Peter; Byers, Edward; Falchetta, Giacomo; Flörke, Martina; Fujimori, Shinichiro; Havlik, Petr; Hejazi, Mohamad; Hunt, Julian; Krey, Volker; Langan, Simon; Nakicenovic, Nebojsa; Palazzo, Amanda; Popp, Alexander; Riahi, Keywan; van Dijk, Michiel; van Vliet, Michelle; van Vuuren, Detlef; Wada, Yoshihide; Wiberg, David; Willaarts, Barbara; Zimm, Caroline; Parkinson, Simon
    Increasing human demands for water, energy, food and materials, are expected to accentuate resource supply challenges over the coming decades. Experience suggests that long-term strategies for a single sector could yield both trade-offs and synergies for other sectors. Thus, long-term transition pathways for linked resource systems should be informed using nexus approaches. Global integrated assessment models can represent the synergies and trade-offs inherent in the exploitation of water, energy and land (WEL) resources, including the impacts of international trade and climate policies. In this study, we review the current state-of-the-science in global integrated assessment modeling with an emphasis on how models have incorporated integrated WEL solutions. A large-scale assessment of the relevant literature was performed using online databases and structured keyword search queries. The results point to the following main opportunities for future research and model development: (1) improving the temporal and spatial resolution of economic models for the energy and water sectors; (2) balancing energy and land requirements across sectors; (3) integrated representation of the role of distribution infrastructure in alleviating resource challenges; (4) modeling of solution impacts on downstream environmental quality; (5) improved representation of the implementation challenges stemming from regional financial and institutional capacity; (6) enabling dynamic multi-sectoral vulnerability and adaptation needs assessment; and (7) the development of fully-coupled assessment frameworks based on consistent, scalable, and regionally-transferable platforms. Improved database management and computational power are needed to address many of these modeling challenges at a global-scale.