Search Results

Now showing 1 - 10 of 11
  • Item
    Cascade Synthesis of Pyrroles from Nitroarenes with Benign Reductants Using a Heterogeneous Cobalt Catalyst
    (Weinheim : Wiley-VCH, 2020) Ryabchuk, Pavel; Leischner, Thomas; Kreyenschulte, Carsten; Spannenberg, Anke; Junge, Kathrin; Beller, Matthias
    A bifunctional 3d-metal catalyst for the cascade synthesis of diverse pyrroles from nitroarenes is presented. The optimal catalytic system Co/NGr-C@SiO2-L is obtained by pyrolysis of a cobalt-impregnated composite followed by subsequent selective leaching. In the presence of this material, (transfer) hydrogenation of easily available nitroarenes and subsequent Paal–Knorr/Clauson-Kass condensation provides >40 pyrroles in good to high yields using dihydrogen, formic acid, or a CO/H2O mixture (WGSR conditions) as reductant. In addition to the favorable step economy, this straightforward domino process does not require any solvents or external co-catalysts. The general synthetic utility of this methodology was demonstrated on a variety of functionalized substrates including the preparation of biologically active and pharmaceutically relevant compounds, for example, (+)-Isamoltane. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Synthesis of Single Atom Based Heterogeneous Platinum Catalysts: High Selectivity and Activity for Hydrosilylation Reactions
    (Washington, DC : ACS Publ., 2017) Cui, Xinjiang; Junge, Kathrin; Dai, Xingchao; Kreyenschulte, Carsten; Pohl, Marga-Martina; Wohlrab, Sebastian; Shi, Feng; Brückner, Angelika; Beller, Matthias
    Catalytic hydrosilylation represents a straightforward and atom-efficient methodology for the creation of C-Si bonds. In general, the application of homogeneous platinum complexes prevails in industry and academia. Herein, we describe the first heterogeneous single atom catalysts (SACs), which are conveniently prepared by decorating alumina nanorods with platinum atoms. The resulting stable material efficiently catalyzes hydrosilylation of industrially relevant olefins with high TON (≈105). A variety of substrates is selectively hydrosilylated including compounds with sensitive reducible and other functional groups (N, B, F, Cl). The single atom based catalyst shows significantly higher activity compared to related Pt nanoparticles.
  • Item
    Understanding the Performance and Stability of Supported Ni-Co-Based Catalysts in Phenol HDO
    (Basel : MDPI, 2016) Huynh, Thuan; Armbruster, Udo; Kreyenschulte, Carsten; Nguyen, Luong; Phan, Binh; Nguyen, Duc; Martin, Andreas
    Performances of bimetallic catalysts (Ni-Co) supported on different acidic carriers (HZSM-5, HBeta, HY, ZrO2) and corresponding monometallic Ni catalysts in aqueous phase hydrodeoxygenation of phenol were compared in batch and continuous flow modes. The results revealed that the support acidity plays an important role in deoxygenation as it mainly controls the oxygen-removing steps in the reaction network. At the same time, sufficient hydrothermal stability of a solid catalyst is essential. Batch experiments revealed 10Ni10Co/HZSM-5 to be the best-performing catalyst in terms of conversion and cyclohexane yield. Complementary continuous runs provided more insights into the relationship between catalyst structure, efficiency and stability. After 24 h on-stream, the catalyst still reveals 100% conversion and a slight loss (from 100% to 90%) in liquid hydrocarbon selectivity. The observed alloy of Co with Ni increased dispersion and stability of Ni-active sites, and combination with HZSM-5 resulted in a well-balanced ratio of metal and acid sites which promoted all necessary steps in preferred pathways. This was proved by studies of fresh and spent catalysts using various characterization techniques (N2 physisorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and infrared spectroscopy of adsorbed pyridine (pyr-IR)).
  • Item
    Correction: A robust iron catalyst for the selective hydrogenation of substituted (iso)quinolones
    (Cambridge : RSC, 2018) Sahoo, Basudev; Kreyenschulte, Carsten; Agostini, Giovanni; Lund, Henrik; Bachmann, Stephan; Scalone, Michelangelo; Junge, Kathrin; Beller, Matthias
    The authors regret that the term “(iso)quinolones” was used throughout the article, including the title, when the correct term should be “(iso)quinolines”. The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.
  • Item
    Development of Highly Stable Low Ni Content Catalyst for Dry Reforming of CH4-Rich Feedstocks
    (Weinheim : WILEY-VCH Verlag, 2020) Ha, Quan Luu Manh; Lund, Henrik; Kreyenschulte, Carsten; Bartling, Stephan; Atia, Hanan; Vuong, Than Huyen; Wohlrab, Sebastian; Armbruster, Udo
    Highly active and coking-resistant Ni catalysts suited for the dry reforming of CH4-rich gases (70 vol %, e. g. biogas or sour natural gas) were prepared starting from a Mg-rich Mg−Al hydrotalcite support precursor. Calcination at 1000 °C yields two phases, MgO and MgAl2O4 spinel. Complexation-deposition of Ni with citric acid on the preformed support as well as lanthanum addition yields a catalyst with remarkably low carbon accumulation over 100 h on stream attributed to both high Ni dispersion and preferred interactions of Ni with MgO on MgAl2O4. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    A robust iron catalyst for the selective hydrogenation of substituted (iso)quinolones
    (Cambridge : RSC, 2018) Sahoo, Basudev; Kreyenschulte, Carsten; Agostini, Giovanni; Lund, Henrik; Bachmann, Stephan; Scalone, Michelangelo; Junge, Kathrin; Beller, Matthias
    By applying N-doped carbon modified iron-based catalysts, the controlled hydrogenation of N-heteroarenes, especially (iso)quinolones, is achieved. Crucial for activity is the catalyst preparation by pyrolysis of a carbon-impregnated composite, obtained from iron(ii) acetate and N-aryliminopyridines. As demonstrated by TEM, XRD, XPS and Raman spectroscopy, the synthesized material is composed of Fe(0), Fe3C and FeNx in a N-doped carbon matrix. The decent catalytic activity of this robust and easily recyclable Fe-material allowed for the selective hydrogenation of various (iso)quinoline derivatives, even in the presence of reducible functional groups, such as nitriles, halogens, esters and amides. For a proof-of-concept, this nanostructured catalyst was implemented in the multistep synthesis of natural products and pharmaceutical lead compounds as well as modification of photoluminescent materials. As such this methodology constitutes the first heterogeneous iron-catalyzed hydrogenation of substituted (iso)quinolones with synthetic importance.
  • Item
    Iron/N-doped graphene nano-structured catalysts for general cyclopropanation of olefins
    (Cambridge : RSC, 2020) Sarkar, Abhijnan; Formenti, Dario; Ferretti, Francesco; Kreyenschulte, Carsten; Bartling, Stephan; Junge, Kathrin; Beller, Matthias; Ragaini, Fabio
    The first examples of heterogeneous Fe-catalysed cyclopropanation reactions are presented. Pyrolysis of in situ-generated iron/phenanthroline complexes in the presence of a carbonaceous material leads to specific supported nanosized iron particles, which are effective catalysts for carbene transfer reactions. Using olefins as substrates, cyclopropanes are obtained in high yields and moderate diastereoselectivities. The developed protocol is scalable and the activity of the recycled catalyst after deactivation can be effectively restored using an oxidative reactivation protocol under mild conditions. This journal is © The Royal Society of Chemistry.
  • Item
    Selective cobalt nanoparticles for catalytic transfer hydrogenation of N-heteroarenes
    (Cambridge : RSC, 2017) Chen, Feng; Sahoo, Basudev; Kreyenschulte, Carsten; Lund, Henrik; Zeng, Min; He, Lin; Junge, Kathrin; Beller, Matthias
    Nitrogen modified cobalt catalysts supported on carbon were prepared by pyrolysis of the mixture generated from cobalt(ii) acetate in aqueous solution of melamine or waste melamine resins, which are widely used as industrial polymers. The obtained nanostructured materials catalyze the transfer hydrogenation of N-heteroarenes with formic acid in the absence of base. The optimal Co/Melamine-2@C-700 catalyst exhibits high activity and selectivity for the dehydrogenation of formic acid into molecular hydrogen and carbon dioxide and allows for the reduction of diverse N-heteroarenes including substrates featuring sensitive functional groups.
  • Item
    A General Catalyst Based on Cobalt Core–Shell Nanoparticles for the Hydrogenation of N-Heteroarenes Including Pyridines
    (Weinheim : Wiley-VCH, 2020) Murugesan, Kathiravan; Chandrashekhar, Vishwas G.; Kreyenschulte, Carsten; Beller, Matthias; Jagadeesh, Rajenahally V.
    Herein, we report the synthesis of specific silica-supported Co/Co3O4 core–shell based nanoparticles prepared by template synthesis of cobalt-pyromellitic acid on silica and subsequent pyrolysis. The optimal catalyst material allows for general and selective hydrogenation of pyridines, quinolines, and other heteroarenes including acridine, phenanthroline, naphthyridine, quinoxaline, imidazo[1,2-a]pyridine, and indole under comparably mild reaction conditions. In addition, recycling of these Co nanoparticles and their ability for dehydrogenation catalysis are showcased. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Supported CuII Single-Ion Catalyst for Total Carbon Utilization of C2 and C3 Biomass-Based Platform Molecules in the N-Formylation of Amines
    (Weinheim : Wiley-VCH, 2021) Dai, Xingchao; Wang, Xinzhi; Rabeah, Jabor; Kreyenschulte, Carsten; Brückner, Angelika; Shi, Feng
    The shift from fossil carbon sources to renewable ones is vital for developing sustainable chemical processes to produce valuable chemicals. In this work, value-added formamides were synthesized in good yields by the reaction of amines with C2 and C3 biomass-based platform molecules such as glycolic acid, 1,3-dihydroxyacetone and glyceraldehyde. These feedstocks were selectively converted by catalysts based on Cu-containing zeolite 5A through the in situ formation of carbonyl-containing intermediates. To the best of our knowledge, this is the first example in which all the carbon atoms in biomass-based feedstocks could be amidated to produce formamide. Combined catalyst characterization results revealed preferably single CuII sites on the surface of Cu/5A, some of which form small clusters, but without direct linking via oxygen bridges. By combining the results of electron paramagnetic resonance (EPR) spin-trapping, operando attenuated total reflection (ATR) IR spectroscopy and control experiments, it was found that the formation of formamides might involve a HCOOH-like intermediate and .NHPh radicals, in which the selective formation of .OOH radicals might play a key role. © 2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH