Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Land-use futures in the shared socio-economic pathways

2017, Popp, Alexander, Calvin, Katherine, Fujimori, Shinichiro, Havlik, Petr, Humpenöder, Florian, Stehfest, Elke, Bodirsky, Benjamin Leon, Dietrich, Jan Philipp, Doelmann, Jonathan C., Gusti, Mykola, Hasegawa, Tomoko, Kyle, Page, Obersteiner, Michael, Tabeau, Andrzej, Takahashi, Kiyoshi, Valin, Hugo, Waldhoff, Stephanie, Weindl, Isabelle, Wise, Marshall, Kriegler, Elmar, Lotze-Campen, Hermann, Fricko, Oliver, Riahi, Keywan, Vuuren, Detlef P. van

In the future, the land system will be facing new intersecting challenges. While food demand, especially for resource-intensive livestock based commodities, is expected to increase, the terrestrial system has large potentials for climate change mitigation through improved agricultural management, providing biomass for bioenergy, and conserving or even enhancing carbon stocks of ecosystems. However, uncertainties in future socio-economic land use drivers may result in very different land-use dynamics and consequences for land-based ecosystem services. This is the first study with a systematic interpretation of the Shared Socio-Economic Pathways (SSPs) in terms of possible land-use changes and their consequences for the agricultural system, food provision and prices as well as greenhouse gas emissions. Therefore, five alternative Integrated Assessment Models with distinctive land-use modules have been used for the translation of the SSP narratives into quantitative projections. The model results reflect the general storylines of the SSPs and indicate a broad range of potential land-use futures with global agricultural land of 4900 mio ha in 2005 decreasing by 743 mio ha until 2100 at the lower (SSP1) and increasing by 1080 mio ha (SSP3) at the upper end. Greenhouse gas emissions from land use and land use change, as a direct outcome of these diverse land-use dynamics, and agricultural production systems differ strongly across SSPs (e.g. cumulative land use change emissions between 2005 and 2100 range from −54 to 402 Gt CO2). The inclusion of land-based mitigation efforts, particularly those in the most ambitious mitigation scenarios, further broadens the range of potential land futures and can strongly affect greenhouse gas dynamics and food prices. In general, it can be concluded that low demand for agricultural commodities, rapid growth in agricultural productivity and globalized trade, all most pronounced in a SSP1 world, have the potential to enhance the extent of natural ecosystems, lead to lowest greenhouse gas emissions from the land system and decrease food prices over time. The SSP-based land use pathways presented in this paper aim at supporting future climate research and provide the basis for further regional integrated assessments, biodiversity research and climate impact analysis. © 2016 The Authors

Loading...
Thumbnail Image
Item

Short term policies to keep the door open for Paris climate goals

2018, Kriegler, Elmar, Bertram, Christoph, Kuramochi, Takeshi, Jakob, Michael, Pehl, Michaja, Stevanović, Miodrag, Höhne, Niklas, Luderer, Gunnar, Minx, Jan C, Fekete, Hanna, Hilaire, Jérôme, Luna, Lisa, Popp, Alexander, Steckel, Jan Christoph, Sterl, Sebastian, Yalew, Amsalu Woldie, Dietrich, Jan Philipp, Edenhofer, Ottmar

Climate policy needs to account for political and social acceptance. Current national climate policy plans proposed under the Paris Agreement lead to higher emissions until 2030 than cost-effective pathways towards the Agreements' long-term temperature goals would imply. Therefore, the current plans would require highly disruptive changes, prohibitive transition speeds, and large long-term deployment of risky mitigation measures for achieving the agreement's temperature goals after 2030. Since the prospects of introducing the cost-effective policy instrument, a global comprehensive carbon price in the near-term, are negligible, we study how a strengthening of existing plans by a global roll-out of regional policies can ease the implementation challenge of reaching the Paris temperature goals. The regional policies comprise a bundle of regulatory policies in energy supply, transport, buildings, industry, and land use and moderate, regionally differentiated carbon pricing. We find that a global roll-out of these policies could reduce global CO2 emissions by an additional 10 GtCO2eq in 2030 compared to current plans. It would lead to emissions pathways close to the levels of cost-effective likely below 2 °C scenarios until 2030, thereby reducing implementation challenges post 2030. Even though a gradual phase-in of a portfolio of regulatory policies might be less disruptive than immediate cost-effective carbon pricing, it would perform worse in other dimensions. In particular, it leads to higher economic impacts that could become major obstacles in the long-term. Hence, such policy packages should not be viewed as alternatives to carbon pricing, but rather as complements that provide entry points to achieve the Paris climate goals.

Loading...
Thumbnail Image
Item

Mid- and long-term climate projections for fragmented and delayed-action scenarios

2013, Schaeffer, Michiel, Gohar, Laila, Kriegler, Elmar, Lowe, Jason, Riahi, Keywan, van Vuuren, Detlef

This paper explores the climate consequences of “delayed near-term action” and “staged accession” scenarios for limiting warming below 2 °C. The stabilization of greenhouse gas concentrations at low levels requires a large-scale transformation of the energy system. Depending on policy choices, there are alternative pathways to reach this objective. An “optimal” path, as emerging from energy-economic modeling, implies immediate action with stringent emission reductions, while the currently proposed international policies translate into reduction delays and higher near-term emissions. In our delayed action scenarios, low stabilization levels need thus to be reached from comparatively high 2030 emission levels. Negative consequences are higher economic cost as explored in accompanying papers and significantly higher mid-term warming, as indicated by a rate of warming 50% higher by the 2040s. By contrast, both mid- and long-term warming are significantly higher in another class of scenarios of staged accession that lets some regions embark on emission reductions, while others follow later, with conservation of carbon-price pathways comparable to the optimal scenarios. Not only is mid-term warming higher in staged accession cases, but the probability to exceed 2 °C in the 21st century increases by a factor of 1.5.