Search Results

Now showing 1 - 8 of 8
Loading...
Thumbnail Image
Item

Switchable adhesion in vacuum using bio-inspired dry adhesives

2015, Purtov, Julia, Frensemeier, Mareike, Kroner, Elmar

Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm2 provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

Loading...
Thumbnail Image
Item

Bioinspired polydimethylsiloxane-based composites with high shear resistance against wet tissue

2016, Fischer, Sarah C.L., Levy, Oren, Kroner, Elmar, Hensel, René, Karp, Jeffrey M., Arzt, Eduard

Patterned microstructures represent a potential approach for improving current wound closure strategies. Microstructures can be fabricated by multiple techniques including replica molding of soft polymer-based materials. However, polymeric microstructures often lack the required shear resistance with tissue needed for wound closure. In this work, scalable microstructures made from composites based on polydimethylsiloxane (PDMS) were explored to enhance the shear resistance with wet tissue. To achieve suitable mechanical properties, PDMS was reinforced by incorporation of polyethylene (PE) particles into the pre-polymer and by coating PE particle reinforced substrates with parylene. The reinforced microstructures showed a 6-fold enhancement, the coated structures even a 13-fold enhancement in Young׳s modulus over pure PDMS. Shear tests of mushroom-shaped microstructures (diameter 450 µm, length 1 mm) against chicken muscle tissue demonstrate first correlations that will be useful for future design of wound closure or stabilization implants.

Loading...
Thumbnail Image
Item

Temperature-induced switchable adhesion using nickel-titanium-polydimethylsiloxane hybrid surfaces

2015, Frensemeier, Mareike, Kaiser, Jessica S., Frick, Carl P., Schneider, Andreas S., Arzt, Eduard, Fertig III, Ray S., Kroner, Elmar

A switchable dry adhesive based on a nickel–titanium (NiTi) shape-memory alloy with an adhesive silicone rubber surface has been developed. Although several studies investigate micropatterned, bioinspired adhesive surfaces, very few focus on reversible adhesion. The system here is based on the indentation-induced two-way shape-memory effect in NiTi alloys. NiTi is trained by mechanical deformation through indentation and grinding to elicit a temperature-induced switchable topography with protrusions at high temperature and a flat surface at low temperature. The trained surfaces are coated with either a smooth or a patterned adhesive polydimethylsiloxane (PDMS) layer, resulting in a temperature-induced switchable surface, used for dry adhesion. Adhesion tests show that the temperature-induced topographical change of the NiTi influences the adhesive performance of the hybrid system. For samples with a smooth PDMS layer the transition from flat to structured state reduces adhesion by 56%, and for samples with a micropatterned PDMS layer adhesion is switchable by nearly 100%. Both hybrid systems reveal strong reversibility related to the NiTi martensitic phase transformation, allowing repeated switching between an adhesive and a nonadhesive state. These effects have been discussed in terms of reversible changes in contact area and varying tilt angles of the pillars with respect to the substrate surface.

Loading...
Thumbnail Image
Item

Adhesion behavior of polymer networks with tailored mechanical properties using spherical and flat contacts

2013, Lakhera, Nishant, Graucob, Annalena, Schneider, Andreas S., Kroner, Elmar, Micciché, Maurizio, Arzt, Eduard, Frick, Carl P.

Four acrylate-based networks were developed such that they possessed similar glass transition temperature (~-37 °C) but varied in material stiffness at room temperature by an order of magnitude (2-12 MPa). Thermo-mechanical and adhesion testing were performed to investigate the effect of elastic modulus on adhesion profiles of the developed samples. Adhesion experiments with a spherical probe revealed no dependency of the pull-off force on material modulus as predicted by the Johnson, Kendall, and Roberts theory. Results obtained using a flat probe showed that the pull-off force increases linearly with an increase in the material modulus, which matches very well with Kendall's theory.

Loading...
Thumbnail Image
Item

A study of the adhesive foot of the gecko: Translation of a publication by Franz Weitlaner

2015, Kroner, Elmar, Davis, Chelsea S.

In recent years, hundreds of scientific studies have been published regarding gecko-inspired adhesives. The primary reason for this increasing interest lies in the unique properties which are combined in the adhesive system of the gecko: this natural system can quickly and repeatedly adhere to different surface chemistry and roughness without the use of adhesion-mediating fluids. Although these properties seem to be inconspicuous at first, there is no man-made system currently available which successfully combines all of these properties and competes with the biological adhesive system. However, there are many applications which may benefit from an artificial adhesion system inspired by geckos, ranging from climbing robots and handling systems to biomedical patches and household objects.

Loading...
Thumbnail Image
Item

Hierarchical macroscopic fibrillar adhesives: in situ study of buckling and adhesion mechanisms on wavy substrates

2015, Bauer, Christina T, Kroner, Elmar, Fleck, Norman A, Arzt, Eduard

Nature uses hierarchical fibrillar structures to mediate temporary adhesion to arbitrary substrates. Such structures provide high compliance such that the flat fibril tips can be better positioned with respect to asperities of a wavy rough substrate. We investigated the buckling and adhesion of hierarchically structured adhesives in contact with flat smooth, flat rough and wavy rough substrates. A macroscopic model for the structural adhesive was fabricated by molding polydimethylsiloxane into pillars of diameter in the range of 0.3–4.8 mm, with up to three different hierarchy levels. Both flat-ended and mushroom-shaped hierarchical samples buckled at preloads one quarter that of the single level structures. We explain this behavior by a change in the buckling mode; buckling leads to a loss of contact and diminishes adhesion. Our results indicate that hierarchical structures can have a strong influence on the degree of adhesion on both flat and wavy substrates. Strategies are discussed that achieve highly compliant substrates which adhere to rough substrates.

Loading...
Thumbnail Image
Item

In situ observation of contact mechanisms in bioinspired adhesives at high magnification

2011, Paretkar, Dadhichi, Schneider, Andreas S., Kroner, Elmar, Arzt, Eduard

We analyzed the contact mechanisms of bioinspired microfibrillar adhesives using in situ scanning electron microscopy. During adhesion tests we observed that (i) the superior adhesion of mushroom-shaped fibrils is assisted by the stochastic nature of detachment, (ii) the aspect ratio of microfibrils influences the bending/buckling behavior and the contact reformation, and (iii) the backing layer deformation causes the microfibrils to elastically interact with each other. These studies give new insights into the mechanisms responsible for adhesion of bioinspired fibrillar adhesives.

Loading...
Thumbnail Image
Item

A novel bioinspired switchable adhesive with three distinct adhesive states

2015, Isla Yagüe, Paula, Kroner, Elmar

A novel switchable adhesive, inspired by the gecko's fibrillar dry attachment system, is introduced. It consists of a patterned surface with an array of mushroom-shaped pillars having two distinct heights. The different pillar heights allow control of the pull-off force in two steps by application of a low and a high preload. For low preload, only the long pillars form contact, resulting in a low pull-off force. At higher preload, all pillars form contact, resulting in high pull-off force. Even further loading leads to buckling induced detachment of the pillars which corresponds to extremely low pull-off force. To achieve the respective samples a new fabrication method called double inking is developed, to achieve multiple-height pillar structures. The adhesion performance of the two-step switchable adhesive is analysed at varying preload and for different pillar aspect ratios and height relations. Finally, the deformation behavior of the samples is investigated by in situ monitoring.