Search Results

Now showing 1 - 2 of 2
  • Item
    Adhesion behavior of polymer networks with tailored mechanical properties using spherical and flat contacts
    (Cambridge : Cambridge University Press, 2013) Lakhera, Nishant; Graucob, Annalena; Schneider, Andreas S.; Kroner, Elmar; Micciché, Maurizio; Arzt, Eduard; Frick, Carl P.
    Four acrylate-based networks were developed such that they possessed similar glass transition temperature (~-37 °C) but varied in material stiffness at room temperature by an order of magnitude (2-12 MPa). Thermo-mechanical and adhesion testing were performed to investigate the effect of elastic modulus on adhesion profiles of the developed samples. Adhesion experiments with a spherical probe revealed no dependency of the pull-off force on material modulus as predicted by the Johnson, Kendall, and Roberts theory. Results obtained using a flat probe showed that the pull-off force increases linearly with an increase in the material modulus, which matches very well with Kendall's theory.
  • Item
    In situ observation of contact mechanisms in bioinspired adhesives at high magnification
    (Cambridge : Cambridge University Press, 2011) Paretkar, Dadhichi; Schneider, Andreas S.; Kroner, Elmar; Arzt, Eduard
    We analyzed the contact mechanisms of bioinspired microfibrillar adhesives using in situ scanning electron microscopy. During adhesion tests we observed that (i) the superior adhesion of mushroom-shaped fibrils is assisted by the stochastic nature of detachment, (ii) the aspect ratio of microfibrils influences the bending/buckling behavior and the contact reformation, and (iii) the backing layer deformation causes the microfibrils to elastically interact with each other. These studies give new insights into the mechanisms responsible for adhesion of bioinspired fibrillar adhesives.