Search Results

Now showing 1 - 2 of 2
  • Item
    Hungry cities: how local food self-sufficiency relates to climate change, diets, and urbanisation
    (Bristol : IOP Publ., 2019) Kriewald, Steffen; Pradhan, Prajal; Costa, Luis; Ros, Anselmo García Cantú; Kropp, Juergen P.
    Using a newly developed model approach and combining it with remote sensing, population, and climate data, first insights are provided into how local diets, urbanisation, and climate change relates to local urban food self-sufficiency. In plain terms, by utilizing the global peri-urban (PU) food production potential approximately 1bn urban residents (30% of global urban population) can be locally nourished, whereby further urbanisation is by far the largest pressure factor on PU agriculture, followed by a change of diets, and climate change. A simple global food transport model which optimizes transport and neglects differences in local emission intensities indicates that CO2 emissions related to food transport can be reduced by a factor of 10.
  • Item
    Reducing deforestation and improving livestock productivity: greenhouse gas mitigation potential of silvopastoral systems in Caquetá
    (Bristol : IOP Publ., 2019) Landholm, David M.; Pradhan, Prajal; Wegmann, Peter; Sánchez, Miguel A. Romero; Salazar, Juan Carlos Suárez; Kropp, Juergen P.
    Colombia's agriculture, forestry and other land use sector accounts for nearly half of its total greenhouse gas (GHG) emissions. The importance of smallholder deforestation is comparatively high in relation to its regional counterparts, and livestock agriculture represents the largest driver of primary forest depletion. Silvopastoral systems (SPSs) are presented as agroecological solutions that synergistically enhance livestock productivity, improve local farmers' livelihoods and hold the potential to reduce pressure on forest conversion. The department of Caquetá represents Colombia's most important deforestation hotspot. Targeting smallholder livestock farms through survey data, in this work we investigate the GHG mitigation potential of implementing SPSs for smallholder farms in this region. Specifically, we assess whether the carbon sequestration taking place in the soil and biomass of SPSs is sufficient to offset the per-hectare increase in livestock GHG emissions resulting from higher stocking rates. To address these questions we use data on livestock population characteristics and historic land cover changes reported from a survey covering 158 farms and model the carbon sequestration occurring in three different scenarios of progressively-increased SPS complexity using the CO2 fix model. We find that, even with moderate tree planting densities, the implementation of SPSs can reduce GHG emissions by 2.6 Mg CO2e ha−1 yr−1 in relation to current practices, while increasing agriculture productivity and contributing to the restoration of severely degraded landscapes.