Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Ultracold atom interferometry in space

2021, Lachmann, Maike D., Ahlers, Holger, Becker, Dennis, Dinkelaker, Aline N., Grosse, Jens, Hellmig, Ortwin, Müntinga, Hauke, Schkolnik, Vladimir, Seidel, Stephan T., Wendrich, Thijs, Wenzlawski, André, Carrick, Benjamin, Gaaloul, Naceur, Lüdtke, Daniel, Braxmaier, Claus, Ertmer, Wolfgang, Krutzik, Markus, Lämmerzahl, Claus, Peters, Achim, Schleich, Wolfgang P., Sengstock, Klaus, Wicht, Andreas, Windpassinger, Patrick, Rasel, Ernst M.

Bose-Einstein condensates (BECs) in free fall constitute a promising source for space-borne interferometry. Indeed, BECs enjoy a slowly expanding wave function, display a large spatial coherence and can be engineered and probed by optical techniques. Here we explore matter-wave fringes of multiple spinor components of a BEC released in free fall employing light-pulses to drive Bragg processes and induce phase imprinting on a sounding rocket. The prevailing microgravity played a crucial role in the observation of these interferences which not only reveal the spatial coherence of the condensates but also allow us to measure differential forces. Our work marks the beginning of matter-wave interferometry in space with future applications in fundamental physics, navigation and earth observation.

Loading...
Thumbnail Image
Item

Cold atoms in space: community workshop summary and proposed road-map

2022, Alonso, Iván, Alpigiani, Cristiano, Altschul, Brett, Araújo, Henrique, Arduini, Gianluigi, Arlt, Jan, Badurina, Leonardo, Balaž, Antun, Bandarupally, Satvika, Barish, Barry C., Barone, Michele, Reguzzoni, Mirko, Richaud, Andrea, Riou, Isabelle, Rothacher, Markus, Roura, Albert, Ruschhaupt, Andreas, Sabulsky, Dylan O., Safronova, Marianna, Saltas, Ippocratis D., Bernabeu, Jose, Haehnelt, Martin, Salvi, Leonardo, Sameed, Muhammed, Saurabh, Pandey, Schäffer, Stefan, Schiller, Stephan, Schilling, Manuel, Schkolnik, Vladimir, Schlippert, Dennis, Schmidt, Piet O., Schnatz, Harald, Hanımeli, Ekim T., Bertoldi, Andrea, Schneider, Jean, Schneider, Ulrich, Schreck, Florian, Schubert, Christian, Shayeghi, Armin, Sherrill, Nathaniel, Shipsey, Ian, Signorini, Carla, Singh, Rajeev, Hawkins, Leonie, Singh, Yeshpal, Bingham, Robert, Skordis, Constantinos, Smerzi, Augusto, Sopuerta, Carlos F., Sorrentino, Fiodor, Sphicas, Paraskevas, Stadnik, Yevgeny V., Stefanescu, Petruta, Tarallo, Marco G., Hees, Aurélien, Tentindo, Silvia, Tino, Guglielmo M., Bize, Sébastien, Tinsley, Jonathan N., Tornatore, Vincenza, Treutlein, Philipp, Trombettoni, Andrea, Tsai, Yu-Dai, Tuckey, Philip, Uchida, Melissa A., Henderson, Victoria A., Valenzuela, Tristan, Van Den Bossche, Mathias, Vaskonen, Ville, Blas, Diego, Verma, Gunjan, Vetrano, Flavio, Vogt, Christian, von Klitzing, Wolf, Waller, Pierre, Walser, Reinhold, Herr, Waldemar, Wille, Eric, Williams, Jason, Windpassinger, Patrick, Wittrock, Ulrich, Bongs, Kai, Wolf, Peter, Woltmann, Marian, Wörner, Lisa, Xuereb, André, Yahia, Mohamed, Herrmann, Sven, Yazgan, Efe, Yu, Nan, Zahzam, Nassim, Zambrini Cruzeiro, Emmanuel, Zhan, Mingsheng, Bouyer, Philippe, Zou, Xinhao, Zupan, Jure, Zupanič, Erik, Braitenberg, Carla, Hird, Thomas, Brand, Christian, Braxmaier, Claus, Bresson, Alexandre, Buchmueller, Oliver, Budker, Dmitry, Bugalho, Luís, Burdin, Sergey, Cacciapuoti, Luigi, Callegari, Simone, Calmet, Xavier, Hobson, Richard, Calonico, Davide, Canuel, Benjamin, Caramete, Laurentiu-Ioan, Carraz, Olivier, Cassettari, Donatella, Chakraborty, Pratik, Chattopadhyay, Swapan, Chauhan, Upasna, Chen, Xuzong, Chen, Yu-Ao, Hock, Vincent, Chiofalo, Maria Luisa, Coleman, Jonathon, Corgier, Robin, Cotter, J. P., Michael Cruise, A., Cui, Yanou, Davies, Gavin, De Roeck, Albert, Demarteau, Marcel, Derevianko, Andrei, Barsanti, Michele, Di Clemente, Marco, Djordjevic, Goran S., Donadi, Sandro, Doré, Olivier, Dornan, Peter, Doser, Michael, Drougakis, Giannis, Dunningham, Jacob, Easo, Sajan, Eby, Joshua, Hogan, Jason M., Elertas, Gedminas, Ellis, John, Evans, David, Examilioti, Pandora, Fadeev, Pavel, Fanì, Mattia, Fassi, Farida, Fattori, Marco, Fedderke, Michael A., Felea, Daniel, Holst, Bodil, Feng, Chen-Hao, Ferreras, Jorge, Flack, Robert, Flambaum, Victor V., Forsberg, René, Fromhold, Mark, Gaaloul, Naceur, Garraway, Barry M., Georgousi, Maria, Geraci, Andrew, Holynski, Michael, Gibble, Kurt, Gibson, Valerie, Gill, Patrick, Giudice, Gian F., Goldwin, Jon, Gould, Oliver, Grachov, Oleg, Graham, Peter W., Grasso, Dario, Griffin, Paul F., Israelsson, Ulf, Guerlin, Christine, Gündoğan, Mustafa, Gupta, Ratnesh K., Jeglič, Peter, Jetzer, Philippe, Juzeliūnas, Gediminas, Kaltenbaek, Rainer, Kamenik, Jernej F., Kehagias, Alex, Bass, Steven, Kirova, Teodora, Kiss-Toth, Marton, Koke, Sebastian, Kolkowitz, Shimon, Kornakov, Georgy, Kovachy, Tim, Krutzik, Markus, Kumar, Mukesh, Kumar, Pradeep, Lämmerzahl, Claus, Bassi, Angelo, Landsberg, Greg, Le Poncin-Lafitte, Christophe, Leibrandt, David R., Lévèque, Thomas, Lewicki, Marek, Li, Rui, Lipniacka, Anna, Lisdat, Christian, Liu, Mia, Lopez-Gonzalez, J. L., Battelier, Baptiste, Loriani, Sina, Louko, Jorma, Luciano, Giuseppe Gaetano, Lundblad, Nathan, Maddox, Steve, Mahmoud, M. A., Maleknejad, Azadeh, March-Russell, John, Massonnet, Didier, McCabe, Christopher, Baynham, Charles F. A., Meister, Matthias, Mežnaršič, Tadej, Micalizio, Salvatore, Migliaccio, Federica, Millington, Peter, Milosevic, Milan, Mitchell, Jeremiah, Morley, Gavin W., Müller, Jürgen, Murphy, Eamonn, Beaufils, Quentin, Müstecaplıoğlu, Özgür E., O’Shea, Val, Oi, Daniel K. L., Olson, Judith, Pal, Debapriya, Papazoglou, Dimitris G., Pasatembou, Elizabeth, Paternostro, Mauro, Pawlowski, Krzysztof, Pelucchi, Emanuele, Belić, Aleksandar, Pereira dos Santos, Franck, Peters, Achim, Pikovski, Igor, Pilaftsis, Apostolos, Pinto, Alexandra, Prevedelli, Marco, Puthiya-Veettil, Vishnupriya, Quenby, John, Rafelski, Johann, Rasel, Ernst M., Bergé, Joel, Ravensbergen, Cornelis

We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.

Loading...
Thumbnail Image
Item

Time-domain optics for atomic quantum matter

2021, Kanthak, Simon, Gebbe, Martina, Gersemann, Matthias, Abend, Sven, Rasel, Ernst M., Krutzik, Markus

We investigate time-domain optics for atomic quantum matter. Within a matter-wave analog of the thin-lens formalism, we study optical lenses of different shapes and refractive powers to precisely control the dispersion of Bose–Einstein condensates. Anharmonicities of the lensing potential are incorporated in the formalism with a decomposition of the center-of-mass motion and expansion of the atoms, allowing to probe the lensing potential with micrometer resolution. By arranging two lenses in time formed by the potentials of an optical dipole trap and an atom-chip trap, we realize a magneto-optical matter-wave telescope. We employ this hybrid telescope to manipulate the expansion and aspect ratio of the ensembles. The experimental results are compared to numerical simulations that involve Gaussian shaped potentials to accommodate lens shapes beyond the harmonic approximation.