Search Results

Now showing 1 - 2 of 2
  • Item
    Assessing the influence of the Merzbacher Lake outburst floods on discharge using the hydrological model SWIM in the Aksu headwaters, Kyrgyzstan/NW China
    (Chichester : John Wiley and Sons Ltd, 2013) Wortmann, M.; Krysanova, V.; Kundzewicz, Z.W.; Su, B.; Li, X.
    Glacial lake outburst floods (GLOF) often have a significant impact on downstream users. Including their effects in hydrological models, identifying past occurrences and assessing their potential impacts are challenges for hydrologists working in mountainous catchments. The regularly outbursting Merzbacher Lake is located in the headwaters of the Aksu River, the most important source of water discharge to the Tarim River, northwest China. Modelling its water resources and the evaluation of potential climate change impacts on river discharge are indispensable for projecting future water availability for the intensively cultivated river oases downstream of the Merzbacher Lake and along the Tarim River. The semi-distributed hydrological model SWIM was calibrated to the outlet station Xiehela on the Kumarik River, by discharge the largest tributary to the Aksu River. The glacial lake outburst floods add to the difficulties of modelling this high-mountain, heavily glaciated catchment with poor data coverage and quality. The aims of the study are to investigate the glacier lake outburst floods using a modelling tool. Results include a two-step model calibration of the Kumarik catchment, an approach for the identification of the outburst floods using the measured gauge data and the modelling results and estimations of the outburst flood volumes. Results show that a catchment model can inform GLOF investigations by providing 'normal' (i.e. without the outburst floods) catchment discharge. The comparison of the simulated and observed discharge proves the occurrence of GLOFs and highlights the influences of the GLOFs on the downstream water balance.
  • Item
    Analysis of changes in climate and river discharge with focus on seasonal runoff predictability in the Aksu River Basin
    (Heidelberg : Springer, 2014) Kundzewicz, Z.W.; Merz, B.; Vorogushyn, S.; Hartmann, H.; Duethmann, D.; Wortmann, M.; Huang, Sh.; Su, B.; Jiang, T.; Krysanova, V.
    The River Aksu is the principal tributary to the River Tarim, providing about three quarters of its discharge. It originates in Kyrgyzstan and flows into the arid areas of the Xinjiang Uyghur Autonomous Region in China, where an extensive irrigated agriculture has been developed in the river oases. The aim of the present contribution is to review the current trends in temperature, precipitation, and river discharge and links between these variables. The temperature in the region and the river discharge have been rising. Changes were studied using multiple trend analyses with different start and end years. Correlations between daily temperature and discharge are high and statistically significant for two headwater subcatchments of the Aksu for most of the time. However, there are episodes in late summer or beginning of autumn when correlations between temperature and discharge for the Xiehela station are absent. This can only be explained by Glacial Lake Outburst Floods from the Lake Merzbacher that are not routinely monitored. On an annual time scale, changes in summer discharge in the highly glacierized Xiehela subcatchment are dominated by changes in temperature. In contrast, in the subcatchment Shaliguilanke, variations in summer streamflow are more strongly influenced by variations in precipitation. A comparison of links between climatic variables and streamflow at different temporal scales is offered. Perspectives for seasonal forecasting are examined.