Search Results

Now showing 1 - 9 of 9
  • Item
    Comparing impacts of climate change on streamflow in four large African river basins
    (Göttingen : Copernicus GmbH, 2014) Aich, V.; Liersch, S.; Vetter, T.; Huang, S.; Tecklenburg, J.; Hoffmann, P.; Koch, H.; Fournet, S.; Krysanova, V.; Müller, E.N.; Hattermann, F.F.
    This study aims to compare impacts of climate change on streamflow in four large representative African river basins: the Niger, the Upper Blue Nile, the Oubangui and the Limpopo. We set up the eco-hydrological model SWIM (Soil and Water Integrated Model) for all four basins individually. The validation of the models for four basins shows results from adequate to very good, depending on the quality and availability of input and calibration data.

    For the climate impact assessment, we drive the model with outputs of five bias corrected Earth system models of Coupled Model Intercomparison Project Phase 5 (CMIP5) for the representative concentration pathways (RCPs) 2.6 and 8.5. This climate input is put into the context of climate trends of the whole African continent and compared to a CMIP5 ensemble of 19 models in order to test their representativeness. Subsequently, we compare the trends in mean discharges, seasonality and hydrological extremes in the 21st century. The uncertainty of results for all basins is high. Still, climate change impact is clearly visible for mean discharges but also for extremes in high and low flows. The uncertainty of the projections is the lowest in the Upper Blue Nile, where an increase in streamflow is most likely. In the Niger and the Limpopo basins, the magnitude of trends in both directions is high and has a wide range of uncertainty. In the Oubangui, impacts are the least significant. Our results confirm partly the findings of previous continental impact analyses for Africa. However, contradictory to these studies we find a tendency for increased streamflows in three of the four basins (not for the Oubangui). Guided by these results, we argue for attention to the possible risks of increasing high flows in the face of the dominant water scarcity in Africa. In conclusion, the study shows that impact intercomparisons have added value to the adaptation discussion and may be used for setting up adaptation plans in the context of a holistic approach.
  • Item
    Assessment of climate change impacts on water resources in three representative ukrainian catchments using eco-hydrological modelling
    (Basel : MDPI AG, 2017) Didovets, I.; Lobanova, A.; Bronstert, A.; Snizhko, S.; Maule, C.F.; Krysanova, V.
    The information about climate change impact on river discharge is vitally important for planning adaptation measures. The future changes can affect different water-related sectors. The main goal of this study was to investigate the potential water resource changes in Ukraine, focusing on three mesoscale river catchments (Teteriv, UpperWestern Bug, and Samara) characteristic for different geographical zones. The catchment scale watershed model-Soil and Water Integrated Model (SWIM)-was setup, calibrated, and validated for the three catchments under consideration. A set of seven GCM-RCM (General Circulation Model-Regional Climate Model) coupled climate scenarios corresponding to RCPs (Representative Concentration Pathways) 4.5 and 8.5 were used to drive the hydrological catchment model. The climate projections, used in the study, were considered as three combinations of low, intermediate, and high end scenarios. Our results indicate the shifts in the seasonal distribution of runoff in all three catchments. The spring high flow occurs earlier as a result of temperature increases and earlier snowmelt. The fairly robust trend is an increase in river discharge in the winter season, and most of the scenarios show a potential decrease in river discharge in the spring.
  • Item
    Sustainable management of river oases along the Tarim River (SuMaRiO) in Northwest China under conditions of climate change
    (München : European Geopyhsical Union, 2015) Rumbaur, C.; Thevs, N.; Disse, M.; Ahlheim, M.; Brieden, A.; Cyffka, B.; Duethmann, D.; Feike, T.; Frör, O.; Gärtner, P.; Halik, Ü.; Hill, J.; Hinnenthal, M.; Keilholz, P.; Kleinschmit, B.; Krysanova, V.; Kuba, M.; Mader, S.; Menz, C.; Othmanli, H.; Pelz, S.; Schroeder, M.; Siew, T.F.; Stender, V.; Stahr, K.; Thomas, F.M.; Welp, M.; Wortmann, M.; Zhao, X.; Chen, X.; Jiang, T.; Luo, J.; Yimit, H.; Yu, R.; Zhang, X.; Zhao, C.
    The Tarim River basin, located in Xinjiang, NW China, is the largest endorheic river basin in China and one of the largest in all of Central Asia. Due to the extremely arid climate, with an annual precipitation of less than 100 mm, the water supply along the Aksu and Tarim rivers solely depends on river water. This is linked to anthropogenic activities (e.g., agriculture) and natural and semi-natural ecosystems as both compete for water. The ongoing increase in water consumption by agriculture and other human activities in this region has been enhancing the competition for water between human needs and nature. Against this background, 11 German and 6 Chinese universities and research institutes have formed the consortium SuMaRiO (Sustainable Management of River Oases along the Tarim River; http://www.sumario.de), which aims to create a holistic picture of the availability of water resources in the Tarim River basin and the impacts on anthropogenic activities and natural ecosystems caused by the water distribution within the Tarim River basin. On the basis of the results from field studies and modeling approaches as well as from suggestions by the relevant regional stakeholders, a decision support tool (DST) will be implemented that will then assist stakeholders in balancing the competition for water, acknowledging the major external effects of water allocation to agriculture and to natural ecosystems. This consortium was formed in 2011 and is funded by the German Federal Ministry of Education and Research. As the data collection phase was finished this year, the paper presented here brings together the results from the fields from the disciplines of climate modeling, cryology, hydrology, agricultural sciences, ecology, geoinformatics, and social sciences in order to present a comprehensive picture of the effects of different water availability schemes on anthropogenic activities and natural ecosystems along the Tarim River. The second objective is to present the project structure of the whole consortium, the current status of work (i.e., major new results and findings), explain the foundation of the decision support tool as a key product of this project, and conclude with application recommendations for the region. The discharge of the Aksu River, which is the major tributary of the Tarim, has been increasing over the past 6 decades. From 1989 to 2011, agricultural area more than doubled: cotton became the major crop and there was a shift from small-scale to large-scale intensive farming. The ongoing increase in irrigated agricultural land leads to the increased threat of salinization and soil degradation caused by increased evapotranspiration. Aside from agricultural land, the major natural and semi-natural ecosystems are riparian (Tugai) forests, shrub vegetation, reed beds, and other grassland, as well as urban and peri-urban vegetation. Within the SuMaRiO cluster, focus has been set on the Tugai forests, with Populus euphratica as the dominant tree species, because these forests belong to the most productive and species-rich natural ecosystems of the Tarim River basin. At sites close to the groundwater, the annual stem diameter increments of Populus euphratica correlated with the river runoffs of the previous year. However, the natural river dynamics cease along the downstream course and thus hamper the recruitment of Populus euphratica. A study on the willingness to pay for the conservation of the natural ecosystems was conducted to estimate the concern of the people in the region and in China's capital. These household surveys revealed that there is a considerable willingness to pay for conservation of the natural ecosystems, with mitigation of dust and sandstorms considered the most important ecosystem service. Stakeholder dialogues contributed to creating a scientific basis for a sustainable management in the future.
  • Item
    Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents
    (München : European Geopyhsical Union, 2015) Vetter, T.; Huang, S.; Aich, V.; Yang, T.; Wang, X.; Krysanova, V.; Hattermann, F.
    Climate change impacts on hydrological processes should be simulated for river basins using validated models and multiple climate scenarios in order to provide reliable results for stakeholders. In the last 10–15 years, climate impact assessment has been performed for many river basins worldwide using different climate scenarios and models. However, their results are hardly comparable, and do not allow one to create a full picture of impacts and uncertainties. Therefore, a systematic intercomparison of impacts is suggested, which should be done for representative regions using state-of-the-art models. Only a few such studies have been available until now with the global-scale hydrological models, and our study is intended as a step in this direction by applying the regional-scale models. The impact assessment presented here was performed for three river basins on three continents: the Rhine in Europe, the Upper Niger in Africa and the Upper Yellow in Asia. For that, climate scenarios from five general circulation models (GCMs) and three hydrological models, HBV, SWIM and VIC, were used. Four representative concentration pathways (RCPs) covering a range of emissions and land-use change projections were included. The objectives were to analyze and compare climate impacts on future river discharge and to evaluate uncertainties from different sources. The results allow one to draw some robust conclusions, but uncertainties are large and shared differently between sources in the studied basins. Robust results in terms of trend direction and slope and changes in seasonal dynamics could be found for the Rhine basin regardless of which hydrological model or forcing GCM is used. For the Niger River, scenarios from climate models are the largest uncertainty source, providing large discrepancies in precipitation, and therefore clear projections are difficult to do. For the Upper Yellow basin, both the hydrological models and climate models contribute to uncertainty in the impacts, though an increase in high flows in the future is a robust outcome ensured by all three hydrological models.
  • Item
    Comparison of water flows in four European lagoon catchments under a set of future climate scenarios
    (Basel : MDPI AG, 2015) Hesse, C.; Stefanova, A.; Krysanova, V.
  • Item
    Assessing the influence of the Merzbacher Lake outburst floods on discharge using the hydrological model SWIM in the Aksu headwaters, Kyrgyzstan/NW China
    (Chichester : John Wiley and Sons Ltd, 2013) Wortmann, M.; Krysanova, V.; Kundzewicz, Z.W.; Su, B.; Li, X.
    Glacial lake outburst floods (GLOF) often have a significant impact on downstream users. Including their effects in hydrological models, identifying past occurrences and assessing their potential impacts are challenges for hydrologists working in mountainous catchments. The regularly outbursting Merzbacher Lake is located in the headwaters of the Aksu River, the most important source of water discharge to the Tarim River, northwest China. Modelling its water resources and the evaluation of potential climate change impacts on river discharge are indispensable for projecting future water availability for the intensively cultivated river oases downstream of the Merzbacher Lake and along the Tarim River. The semi-distributed hydrological model SWIM was calibrated to the outlet station Xiehela on the Kumarik River, by discharge the largest tributary to the Aksu River. The glacial lake outburst floods add to the difficulties of modelling this high-mountain, heavily glaciated catchment with poor data coverage and quality. The aims of the study are to investigate the glacier lake outburst floods using a modelling tool. Results include a two-step model calibration of the Kumarik catchment, an approach for the identification of the outburst floods using the measured gauge data and the modelling results and estimations of the outburst flood volumes. Results show that a catchment model can inform GLOF investigations by providing 'normal' (i.e. without the outburst floods) catchment discharge. The comparison of the simulated and observed discharge proves the occurrence of GLOFs and highlights the influences of the GLOFs on the downstream water balance.
  • Item
    Hydrological impacts of moderate and high-end climate change across European river basins
    (Amsterdam : Elsevier B.V., 2018) Lobanova, A.; Liersch, S.; Nunes, J.P.; Didovets, I.; Stagl, J.; Huang, S.; Koch, H.; Rivas López, M.D.R.; Maule, C.F.; Hattermann, F.; Krysanova, V.
    Study region: To provide a picture of hydrological impact of climate change across different climatic zones in Europe, this study considers eight river basins: Tagus in Iberian Peninsula; Emån and Lule in Scandinavia; Rhine, Danube and Teteriv in Central and Eastern Europe; Tay on the island of Great Britain and Northern Dvina in North-Eastern Europe. Study focus: In this study the assessment of the impacts of moderate and high-end climate change scenarios on the hydrological patterns in European basins was conducted. To assess the projected changes, the process-based eco-hydrological model SWIM (Soil and Water Integrated Model) was set up, calibrated and validated for the basins. The SWIM was driven by the bias-corrected climate projections obtained from the coupled simulations of the Global Circulation Models and Regional Climate Models. New hydrological insights for the region: The results show robust decreasing trends in water availability in the most southern river basin (Tagus), an overall increase in discharge in the most northern river basin (Lule), increase in the winter discharge and shift in seasonality in Northern and Central European catchments. The impacts of the high-end climate change scenario RCP 8.5 continue to develop until the end of the century, while those of the moderate climate change scenario RCP 4.5 level-off after the mid-century. The results of this study also confirm trends, found previously with mostly global scale models.
  • Item
    Adaptation strategy to hydrological impact of climate change strategie [Adaptace na hydrologické dopady změny klimatu]
    (Berlin : de Gruyter Open, 2010) Slámová, R.; Martínková, M.; Krysanova, V.
    In the context of discussed global climate change the emphasis is placed mainly on the adaptability of the water management methodology at present time. Therefore a questionnaire inquiry oriented to the perception of the climate change impact and current state of adaptation strategies implementation was carried out and evaluated. The research was realised among the water management experts in six large transboundary basins: Elbe, Rhine, Guadiana, Amudaria, Orange and Nile. The questionnaire was divided into six parts concerning for example: expected climate change impacts, adaptation measures, drivers for development of adaptation strategy, adaptation barriers etc. Responses were evaluated with rating and the dominant answers and lists of priority were established. Results were evaluated looking for overall conclusions in all or almost all regions, as well as conclusions for each region. The main benefit of the research lies in the evaluation based principally on the opinions of policy makers, stakeholders and water managers in the river basins not on the climate scenarios. The outcomes have proved understanding of the climate change impact issue over all six basins, only the approach to adaptation is partly different. The historical development of water management in the basin influences the perception as well.