Search Results

Now showing 1 - 2 of 2
  • Item
    Process induced skin-core morphology in injection molded polyamide 66
    (Basel : MDPI, 2020) Spoerer, Yvonne; Androsch, René; Jehnichen, Dieter; Kuehnert, Ines
    Polyamide 66 (PA 66) was injection-molded to obtain samples with a structure gradient between skin and core, as it was revealed by analysis of the semi-crystalline morphology using polarized-light optical microscopy (POM). Wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS) were employed to characterize thin sections with a thickness in the order of magnitude of 50 µm, allowing detection of crystals of different perfection, as a function of the distance from the surface. It was found that the transparent and non-spherulitic skin layer contains rather imperfect α-crystals while the perfection of α-crystals continuously increases with extending distance from the surface. Since variation of the molding conditions allows tailoring the skin-core morphology, the present study was performed to suggest a reliable route to map the presence of specific semi-crystalline morphologies in such samples
  • Item
    Synthesis and characterization of MgAl-DBS LDH/PLA composite by sonication-assisted masterbatch (SAM) melt mixing method
    (Cambridge : RSC, 2019) Quispe-Dominguez, Roger; Naseem, Sajid; Leuteritz, Andreas; Kuehnert, Ines
    This research work is based on the comparison of the mixing phenomena of magnesium-aluminum (MgAl) layered double hydroxides (LDHs) intercalated by dodecylbenzene sulfonate (MgAl-DBS) in poly(lactic acid) (PLA). Two mixing techniques were used to compare the dispersion of LDHs in PLA such as sonication-assisted masterbatch (SAM) melt mixing and direct melting (DM) methods. MgAl LDHs synthesized by the urea hydrolysis method and intercalated with DBS anions using anion exchange reaction and were used in different ratios in PLA (1.25, 2.5, and 5 wt%). MgAl LDHs and their anion intercalation were studied by the X-ray diffraction analysis (XRD) method. Different properties of LDH/PLA composites were compared to analyze the effect of these mixing techniques. Dispersion and exfoliation of LDHs in PLA were investigated by X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). Influences on the rheological properties were evaluated by analyzing the complex viscosities (η*), storage modulus (G′) and loss modulus (G′′) by using a rheometer. The thermal properties, thermal stability and effect on crystallinity of composites made with the two mixing techniques were analyzed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) respectively. The mixing mechanism and amount of MgAl-DBS LDHs have a notable effect on the properties of PLA composites with sonication-assisted masterbatch melt mixing techniques giving better dispersion of LDHs in PLA composites as compared to direct melt mixing. © The Royal Society of Chemistry.