Search Results

Now showing 1 - 2 of 2
  • Item
    FAIR Convergence Matrix: Optimizing the Reuse of Existing FAIR-Related Resources
    (Cambridge, MA : MIT Press, 2020) Sustkova, Hana Pergl; Hettne, Kristina Maria; Wittenburg, Peter; Jacobsen, Annika; Kuhn, Tobias; Pergl, Robert; Slifka, Jan; McQuilton, Peter; Magagna, Barbara; Sansone, Susanna-Assunta; Stocker, Markus; Imming, Melanie; Lannom, Larry; Musen, Mark; Schultes, Erik
    The FAIR principles articulate the behaviors expected from digital artifacts that are Findable, Accessible, Interoperable and Reusable by machines and by people. Although by now widely accepted, the FAIR Principles by design do not explicitly consider actual implementation choices enabling FAIR behaviors. As different communities have their own, often well-established implementation preferences and priorities for data reuse, coordinating a broadly accepted, widely used FAIR implementation approach remains a global challenge. In an effort to accelerate broad community convergence on FAIR implementation options, the GO FAIR community has launched the development of the FAIR Convergence Matrix. The Matrix is a platform that compiles for any community of practice, an inventory of their self-declared FAIR implementation choices and challenges. The Convergence Matrix is itself a FAIR resource, openly available, and encourages voluntary participation by any self-identified community of practice (not only the GO FAIR Implementation Networks). Based on patterns of use and reuse of existing resources, the Convergence Matrix supports the transparent derivation of strategies that optimally coordinate convergence on standards and technologies in the emerging Internet of FAIR Data and Services.
  • Item
    Semantic units: organizing knowledge graphs into semantically meaningful units of representation
    (London : BioMed Central, 2024) Vogt, Lars; Kuhn, Tobias; Hoehndorf, Robert
    Background In today’s landscape of data management, the importance of knowledge graphs and ontologies is escalating as critical mechanisms aligned with the FAIR Guiding Principles—ensuring data and metadata are Findable, Accessible, Interoperable, and Reusable. We discuss three challenges that may hinder the effective exploitation of the full potential of FAIR knowledge graphs. Results We introduce “semantic units” as a conceptual solution, although currently exemplified only in a limited prototype. Semantic units structure a knowledge graph into identifiable and semantically meaningful subgraphs by adding another layer of triples on top of the conventional data layer. Semantic units and their subgraphs are represented by their own resource that instantiates a corresponding semantic unit class. We distinguish statement and compound units as basic categories of semantic units. A statement unit is the smallest, independent proposition that is semantically meaningful for a human reader. Depending on the relation of its underlying proposition, it consists of one or more triples. Organizing a knowledge graph into statement units results in a partition of the graph, with each triple belonging to exactly one statement unit. A compound unit, on the other hand, is a semantically meaningful collection of statement and compound units that form larger subgraphs. Some semantic units organize the graph into different levels of representational granularity, others orthogonally into different types of granularity trees or different frames of reference, structuring and organizing the knowledge graph into partially overlapping, partially enclosed subgraphs, each of which can be referenced by its own resource. Conclusions Semantic units, applicable in RDF/OWL and labeled property graphs, offer support for making statements about statements and facilitate graph-alignment, subgraph-matching, knowledge graph profiling, and for management of access restrictions to sensitive data. Additionally, we argue that organizing the graph into semantic units promotes the differentiation of ontological and discursive information, and that it also supports the differentiation of multiple frames of reference within the graph.