Search Results

Now showing 1 - 4 of 4
  • Item
    Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments - A review
    (Milton Park : Taylor & Francis, 2017) Swietlicki, E.; Hansson, H.-C.; Hämeri, K.; Svenningsson, B.; Massling, A.; Mcfiggans, G.; Mcmurry, P.H.; Petäjä, T.; Tunved, P.; Gysel, M.; Topping, D.; Weingartner, E.; Baltensperger, U.; Rissler, J.; Wiedensohler, A.; Kulmala, M.
    The hygroscopic properties play a vital role for the direct and indirect effects of aerosols on climate, as well as the health effects of particulate matter (PM) by modifying the deposition pattern of inhaled particles in the humid human respiratory tract. Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA) instruments have been used in field campaigns in various environments globally over the last 25 yr to determine the water uptake on submicrometre particles at subsaturated conditions. These investigations have yielded valuable and comprehensive information regarding the particle hygroscopic properties of the atmospheric aerosol, including state of mixing. These properties determine the equilibrium particle size at ambient relative humidities and have successfully been used to calculate the activation of particles at water vapour supersaturation. This paper summarizes the existing published H-TDMA results on the sizeresolved submicrometre aerosol particle hygroscopic properties obtained from ground-based measurements at multiple marine, rural, urban and free tropospheric measurement sites. The data is classified into groups of hygroscopic growth indicating the external mixture, and providing clues to the sources and processes controlling the aerosol. An evaluation is given on how different chemical and physical properties affect the hygroscopic growth.
  • Item
    In situ formation and spatial variability of particle number concentration in a European megacity
    (München : European Geopyhsical Union, 2015) Pikridas, M.; Sciare, J.; Freutel, F.; Crumeyrolle, S.; von der Weiden-Reinmüller, S.-L.; Borbon, A.; Schwarzenboeck, A.; Merkel, M.; Crippa, M.; Kostenidou, E.; Psichoudaki, M.; Hildebrandt, L.; Engelhart, G.J.; Petäjä, T.; Prévôt, A.S.H.; Drewnick, F.; Baltensperger, U.; Wiedensohler, A.; Kulmala, M.; Beekmann, M.; Pandis, S.N.
    Ambient particle number size distributions were measured in Paris, France, during summer (1–31 July 2009) and winter (15 January to 15 February 2010) at three fixed ground sites and using two mobile laboratories and one airplane. The campaigns were part of the Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation (MEGAPOLI) project. New particle formation (NPF) was observed only during summer on approximately 50 % of the campaign days, assisted by the low condensation sink (about 10.7 ± 5.9 × 10−3 s−1). NPF events inside the Paris plume were also observed at 600 m altitude onboard an aircraft simultaneously with regional events identified on the ground. Increased particle number concentrations were measured aloft also outside of the Paris plume at the same altitude, and were attributed to NPF. The Paris plume was identified, based on increased particle number and black carbon concentration, up to 200 km away from the Paris center during summer. The number concentration of particles with diameters exceeding 2.5 nm measured on the surface at the Paris center was on average 6.9 ± 8.7 × 104 and 12.1 ± 8.6 × 104 cm−3 during summer and winter, respectively, and was found to decrease exponentially with distance from Paris. However, further than 30 km from the city center, the particle number concentration at the surface was similar during both campaigns. During summer, one suburban site in the NE was not significantly affected by Paris emissions due to higher background number concentrations, while the particle number concentration at the second suburban site in the SW increased by a factor of 3 when it was downwind of Paris.
  • Item
    Modelling Ag-particle activation and growth in a TSI WCPC model 3785
    (München : European Geopyhsical Union, 2010) Stratmann, F.; Herrmann, E.; Petäjä, T.; Kulmala, M.
    In this work, we modelled activation and growth of silver particles in the water-operated TSI model 3785 water condensation particle counter (WCPC). Our objective was to investigate theoretically how various effects influence the counting efficiency of this CPC. Coupled fluid and particle dynamic processes were modelled with the computational fluid dynamics (CFD) code FLUENT in combination with the Fine Particle Model (FPM) to obtain profiles of temperature, vapour concentration, nucleation rate, and particle size. We found that the counting efficiency of the TSI 3785 for small particles might be affected by the presence of larger particles. Moreover, homogeneous nucleation processes can significantly influence counting efficiency.
  • Item
    Variability of air ion concentrations in urban Paris
    (München : European Geopyhsical Union, 2015) Dos Santos, V.N.; Herrmann, E.; Manninen, H.E.; Hussein, T.; Hakala, J.; Nieminen, T.; Aalto, P.P.; Merkel, M.; Wiedensohler, A.; Kulmala, M.; Petäjä, T.; Hämeri, K.
    Air ion concentrations influence new particle formation and consequently the global aerosol as potential cloud condensation nuclei. We aimed to evaluate air ion concentrations and characteristics of new particle formation events (NPF) in the megacity of Paris, France, within the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric Pollution and climate effects, and Integrated tools for assessment and mitigation) project. We measured air ion number size distributions (0.8–42 nm) with an air ion spectrometer and fine particle number concentrations (> 6 nm) with a twin differential mobility particle sizer in an urban site of Paris between 26 June 2009 and 4 October 2010. Air ions were size classified as small (0.8–2 nm), intermediate (2–7 nm), and large (7–20 nm). The median concentrations of small and large ions were 670 and 680 cm−3, respectively, (sum of positive and negative polarities), whereas the median concentration of intermediate ions was only 20 cm−3, as these ions were mostly present during new particle formation bursts, i.e. when gas-to-particle conversion produced fresh aerosol particles from gas phase precursors. During peaks in traffic-related particle number, the concentrations of small and intermediate ions decreased, whereas the concentrations of large ions increased. Seasonal variations affected the ion population differently, with respect to their size and polarity. NPF was observed in 13 % of the days, being most frequent in spring and late summer (April, May, July, and August). The results also suggest that NPF was favoured on the weekends in comparison to workdays, likely due to the lower levels of condensation sinks in the mornings of weekends (CS weekdays 09:00: 18 × 10−3 s−1; CS weekend 09:00: 8 × 10−3 s−1). The median growth rates (GR) of ions during the NPF events varied between 3 and 7 nm h−1, increasing with the ion size and being higher on workdays than on weekends for intermediate and large ions. The median GR of small ions on the other hand were rather similar on workdays and weekends. In general, NPF bursts changed the diurnal cycle of particle number as well as intermediate and large ions by causing an extra peak between 09:00 and 14:00. On average, during the NPF bursts the concentrations of intermediate ions were 8.5–10 times higher than on NPF non-event days, depending on the polarity, and the concentrations of large ions and particles were 1.5–1.8 and 1.2 times higher, respectively. Because the median concentrations of intermediate ions were considerably higher on NPF event days in comparison to NPF non-event days, the results indicate that intermediate ion concentrations could be used as an indication for NPF in Paris. The results suggest that NPF was a source of ions and aerosol particles in Paris and therefore contributed to both air quality degradation and climatic effects, especially in the spring and summer.