Search Results

Now showing 1 - 2 of 2
  • Item
    Introduction: European Integrated Project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales
    (München : European Geopyhsical Union, 2009) Kulmala, M.; Asmi, A.; Lappalainen, H.K.; Carslaw, K.S.; Pöschl, U.; Baltensperger, U.; Hov, Ø.; Brenquier, J.-L.; Pandis, S.N.; Facchini, M.C.; Hansson, H.-C.; Wiedensohler, A.; O'Dowd, C.D.
    The European Aerosol Cloud Climate and Air Quality Interactions project EUCAARI is an EU Research Framework 6 integrated project focusing on understanding the interactions of climate and air pollution. EUCAARI works in an integrative and multidisciplinary way from nano- to global scale. EUCAARI brings together several leading European research groups, state-of-the-art infrastructure and some key scientists from third countries to investigate the role of aerosol on climate and air quality. Altogether 48 partners from 25 countries are participating in EUCAARI. During the first 16 months EUCAARI has built operational systems, e.g. established pan-European measurement network for Lagrangian studies and four stations in developing countries. Also an improved understanding of nanoscale processes (like nucleation) has been implemented in global models. Here we present the research methods, organisation, operations and first results of EUCAARI.
  • Item
    New particle formation in the Front Range of the Colorado Rocky Mountains
    (München : European Geopyhsical Union, 2008) Boy, M.; Karl, T.; Turnipseed, A.; Mauldin, R.L.; Kosciuch, E.; Greenberg, J.; Massling, A.; Rathbone, J.; Smith, J.; Held, A.; Barsanti, K.; Wehner, B.; Bauer, S.; Wiedensohler, A.; Bonn, B.; Kulmala, M.; Guenther, A.
    New particle formation is of interest because of its influence on the properties of aerosol population, and due to the possible contribution of newly formed particles to cloud condensation nuclei. Currently no conclusive evidence exists as to the mechanism or mechanisms of nucleation and subsequent particle growth. However, nucleation rates exhibit a clear dependence on ambient sulphuric acid concentrations and particle growth is often attributed to the condensation of organic vapours. A detailed study of new particle formation in the Front Range of the Colorado Rocky Mountains is presented here. Gas and particle measurement data for 32 days was analyzed to identify event days, possible event days, and non-event days. A detailed analysis of nucleation and growth is provided for four days on which new particle formation was clearly observed. Evidence for the role of sesquiterpenes in new particle formation is presented.