Search Results

Now showing 1 - 9 of 9
  • Item
    MALTE - Model to predict new aerosol formation in the lower troposphere
    (München : European Geopyhsical Union, 2006) Boy, M.; Hellmuth, O.; Korhonen, H.; Nilsson, E.D.; ReVelle, D.; Turnipseed, A.; Arnold, F.; Kulmala, M.
    The manuscript presents a detailed description of the meteorological and chemical code of Malte – a model to predict new aerosol formation in the lower troposphere. The aerosol dynamics are achieved by the new developed UHMA (University of Helsinki Multicomponent Aerosol Model) code with kinetic limited nucleation as responsible mechanism to form new clusters. First results indicate that the model is able to predict the on- and offset of new particle formation as well as the total aerosol number concentrations that were in good agreement with the observations. Further, comparison of predicted and measured H2SO4 concentrations showed a satisfactory agreement. The simulation results indicated that at a certain transitional particle diameter (2–7 nm), organic molecules can begin to contribute significantly to the growth rate compared to sulphuric acid. At even larger particle sizes, organic molecules can dominate the growth rate on days with significant monoterpene concentrations. The intraday vertical evolution of newly formed clusters and particles in two different size ranges resulted in two maxima at the ground. These particles grow around noon to the detectable size range and agree well with measured vertical profiles.
  • Item
    The contribution of sulphuric acid to atmospheric particle formation and growth: A comparison between boundary layers in Northern and Central Europe
    (München : European Geopyhsical Union, 2005) Fiedler, V.; Dal Maso, M.; Boy, M.; Aufmhoff, H.; Hoffmann, J.; Schuck, T.; Birmili, W.; Hanke, M.; Uecker, J.; Arnold, F.; Kulmala, M.
    Atmospheric gaseous sulphuric acid was measured and its influence on particle formation and growth was investigated building on aerosol data. The measurements were part of the EU-project QUEST and took place at two different measurement sites in Northern and Central Europe (Hyytiälä, Finland, March-April 2003 and Heidelberg, Germany, March-April 2004). From a comprehensive data set including sulphuric acid, particle number size distributions and meteorological data, particle growth rates, particle formation rates and source rates of condensable vapors were inferred. Growth rates were determined in two different ways, from particle size distributions as well as from a so-called timeshift analysis. Moreover, correlations between sulphuric acid and particle number concentration between 3 and 6 nm were examined and the influence of air masses of different origin was investigated. Measured maximum concentrations of sulphuric acid were in the range from 1x106 to 16x106cm-3. The gaseous sulphuric acid lifetime with respect to condensation on aerosol particles ranged from 2 to 33min in Hyytiälä and from 0.5 to 8 min in Heidelberg. Most calculated values (growth rates, formation rates, vapor source rates) were considerably higher in Central Europe (Heidelberg), due to the more polluted air and higher preexistent aerosol concentrations. Close correlations between H2SO4 and nucleation mode particles (size range: 3-6 nm) were found on most days at both sites. The percentage contribution of sulphuric acid to particle growth was below 10% at both places and to initial growth below 20%. An air mass analysis indicated that at Heidelberg new particles were formed predominantly in air advected from southwesterly directions.
  • Item
    Non-volatile residuals of newly formed atmospheric particles in the boreal forest
    (München : European Geopyhsical Union, 2007) Ehn, M.; Petäjä, T.; Birmili, W.; Junninen, H.; Aalto, P.; Kulmala, M.
    The volatility of sub-micrometer atmospheric aerosol particles was studied in a rural background environment in Finland using a combination of a heating tube and a scanning mobility particle sizer. The analysis focused on nanoparticles formed through nucleation which were subsequently observed during their growth in the diameter range between 5 and 60 nm. During the 6 days of new particle formation shown in detail, the concentrations of newly formed particles increased up to 10 000 cm−3. The number of nucleation mode particles measured after volatilization in the heating tube at 280°C was up to 90% of the total number under ambient conditions. Taking into account the absolute accuracy of the size distribution measurements, all ambient particles found in the rural atmosphere could have a non-volatile core after volatilization at 280°C. As the regional new particle formation events developed over time as a result of further vapor condensation, the newly formed particles grew at an average growth rate of 2.4±0.3 nm h−1. Importantly, the non-volatile cores of nucleation mode particles were also observed to grow over time, however, at a lower average growth rate of 0.6±0.3 nm h−1. One implication of the volatility analysis is that the newly formed particles, which have reached ambient diameters of 15 nm, are unlikely to consist of sulfuric acid, ammonium sulfate, and water alone. A relatively constant ratio between the growth rate of the ambient particles as well as their non-volatile cores indicates that non-volatile matter is formed only gradually in the growing particles. The non-volatile fraction of the particles showed some correlation with the ambient temperature. The composition and formation mechanism of this non-volatile material in nucleation mode particles are, to date, not known.
  • Item
    SO2 oxidation products other than H2SO4 as a trigger of new particle formation. Part 2: Comparison of ambient and laboratory measurements, and atmospheric implications
    (München : European Geopyhsical Union, 2008) Laaksonen, A.; Kulmala, M.; Bernd, T.; Stratmann, F.; Mikkonen, S.; Ruuskanen, A.; Lehtinen, K.E.J.; Dal Maso, M.; Aalto, P.; Petäjä, T.; Riipinen, I.; Sihto, S.-L.; Janson, R.; Arnold, F.; Hanke, M.; Ücker, J.; Umann, B.; Sellegri, K.; O'Dowd, C.D.; Viisanen, Y.
    Atmospheric new particle formation is generally thought to occur due to homogeneous or ion-induced nucleation of sulphuric acid. We compare ambient nucleation rates with laboratory data from nucleation experiments involving either sulphuric acid or oxidized SO2. Atmospheric nucleation occurs at H2SO4 concentrations 2–4 orders of magnitude lower than binary or ternary nucleation rates of H2SO4 produced from a liquid reservoir, and atmospheric H2SO4 concentrations are very well replicated in the SO2 oxidation experiments. We hypothesize these features to be due to the formation of free HSO5 radicals in pace with H2SO4 during the SO2 oxidation. We suggest that at temperatures above ~250 K these radicals produce nuclei of new aerosols much more efficiently than H2SO4. These nuclei are activated to further growth by H2SO4 and possibly other trace species. However, at lower temperatures the atmospheric relative acidity is high enough for the H2SO4–H2O nucleation to dominate.
  • Item
    SO2 oxidation products other than H2SO4 as a trigger of new particle formation. Part 1: Laboratory investigations
    (München : European Geopyhsical Union, 2008) Berndt, T.; Stratmann, F.; Bräsel, S.; Heintzenberg, J.; Laaksonen, A.; Kulmala, M.
    Mechanistic investigations of atmospheric H2SO4 particle formation have been performed in a laboratory study taking either H2SO4 from a liquid reservoir or using the gas-phase reaction of OH radicals with SO2. Applying both approaches for H2SO4 generation simultaneously it was found that H2SO4 evaporated from the liquid reservoir acts considerably less effective for the process of particle formation and growth than the products originating from the reaction of OH radicals with SO2. Furthermore, for NOx concentrations >5×1011 molecule cm−3 the formation of new particles from the reaction of OH radicals with SO2 is inhibited. This suggests that substances other than H2SO4 (potentially products from sulphur-containing peroxy radicals) trigger lower tropospheric new particle formation and growth. The currently accepted mechanism for SO2 gas-phase oxidation does not consider the formation of such substances. The analysis of new particle formation for different reaction conditions in our experiment suggests that a contribution of impurities to the nucleation process is unlikely.
  • Item
    Introduction: European Integrated Project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales
    (München : European Geopyhsical Union, 2009) Kulmala, M.; Asmi, A.; Lappalainen, H.K.; Carslaw, K.S.; Pöschl, U.; Baltensperger, U.; Hov, Ø.; Brenquier, J.-L.; Pandis, S.N.; Facchini, M.C.; Hansson, H.-C.; Wiedensohler, A.; O'Dowd, C.D.
    The European Aerosol Cloud Climate and Air Quality Interactions project EUCAARI is an EU Research Framework 6 integrated project focusing on understanding the interactions of climate and air pollution. EUCAARI works in an integrative and multidisciplinary way from nano- to global scale. EUCAARI brings together several leading European research groups, state-of-the-art infrastructure and some key scientists from third countries to investigate the role of aerosol on climate and air quality. Altogether 48 partners from 25 countries are participating in EUCAARI. During the first 16 months EUCAARI has built operational systems, e.g. established pan-European measurement network for Lagrangian studies and four stations in developing countries. Also an improved understanding of nanoscale processes (like nucleation) has been implemented in global models. Here we present the research methods, organisation, operations and first results of EUCAARI.
  • Item
    Connections between atmospheric sulphuric acid and new particle formation during QUEST III–IV campaigns in Heidelberg and Hyytiälä
    (München : European Geopyhsical Union, 2007) Riipinen, I.; Pringle, S.-L.; Kulmala, M.; Arnold, F.; Dal Maso, M.; Birmili, W.; Saarnio, K.; Teinilä, K.; Kerminen, V.-M.; Laaksonen, A.; Lehtinen, K.E.J.
    This study investigates the connections between atmospheric sulphuric acid and new particle formation during QUEST III and BACCI/QUEST IV campaigns. The campaigns have been conducted in Heidelberg (2004) and Hyytiälä (2005), the first representing a polluted site surrounded by deciduous forest, and the second a rural site in a boreal forest environment. We have studied the role of sulphuric acid in particle formation and growth by determining 1) the power-law dependencies between sulphuric acid ([H2SO4]), and particle concentrations (N3–6) or formation rates at 1 nm and 3 nm (J1 and J3); 2) the time delays between [H2SO4] and N3–6 or J3, and the growth rates for 1–3 nm particles; 3) the empirical nucleation coefficients A and K in relations J1=A[H2SO4] and J1=K[H2SO4]2, respectively; 4) theoretical predictions for J1 and J3 for the days when no significant particle formation is observed, based on the observed sulphuric acid concentrations and condensation sinks. In both environments, N3–6 or J3 and [H2SO4] were linked via a power-law relation with exponents typically ranging from 1 to 2. The result suggests that the cluster activation theory and kinetic nucleation have the potential to explain the observed particle formation. However, some differences between the sites existed: The nucleation coefficients were about an order of magnitude greater in Heidelberg than in Hyytiälä conditions. The time lags between J3 and [H2SO4] were consistently lower than the corresponding delays between N3–6 and [H2SO4]. The exponents in the J3∝[H2SO4 ]nJ3-connection were consistently higher than or equal to the exponents in the relation N3–6∝[H2SO4 ]nN36. In the J1 values, no significant differences were found between the observed rates on particle formation event days and the predictions on non-event days. The J3 values predicted by the cluster activation or kinetic nucleation hypotheses, on the other hand, were considerably lower on non-event days than the rates observed on particle formation event days. This study provides clear evidence implying that the main process limiting the observable particle formation is the competition between the growth of the freshly formed particles and their loss by scavenging, rather than the initial particle production by nucleation of sulphuric acid. In general, it can be concluded that the simple models based on sulphuric acid concentrations and particle formation by cluster activation or kinetic nucleation can predict the occurence of atmospheric particle formation and growth well, if the particle scavenging is accurately accounted for.
  • Item
    Field measurements of hygroscopic properties and state of mixing of nucleation mode particles
    (München : European Geopyhsical Union, 2002) Väkevä, M.; Kulmala, M.; Stratmann, F.; Hämeri, K.
    An Ultrafine Tandem Differential Mobility Analyser (UF-TDMA) has been used in several field campaigns over the last few years. The investigations were focused on the origin and properties of nucleation event aerosols, which are observed frequently in various environments. This paper gives a summary of the results of 10 nm and 20 nm particle hygroscopic properties from different measurement sites: an urban site, an urban background site and a forest site in Finland and a coastal site in western Ireland. The data can be classified in four hygroscopic growth classes: hydrofobic, less-hygroscopic, more-hygroscopic and sea-salt. Similar classification has been earlier presented for Aitken and accumulation mode particles. In urban air, the summertime 10 nm particles showed varying less-hygroscopic growth behaviour, while winter time 10 nm and 20 nm particles were externally mixed with two different hygroscopic growth modes. The forest measurements revealed diurnal behaviour of hygroscopic growth, with high growth factors at day time and lower during night. The urban background particles had growth behaviour similar to the urban and forest measurement sites depending on the origin of the observed particles. The coastal measurements were strongly affected by air mass history. Both 10 nm and 20 nm particles were hygroscopic in marine background air. The 10 nm particles produced during clean nucleation burst periods were hydrofobic. Diurnal variation and higher growth factors of 10 nm particles were observed in air affected by other source regions. External mixing was occasionally observed at all the sites, but incidents with more than two growth modes were extremely rare.
  • Item
    New particle formation in the Front Range of the Colorado Rocky Mountains
    (München : European Geopyhsical Union, 2008) Boy, M.; Karl, T.; Turnipseed, A.; Mauldin, R.L.; Kosciuch, E.; Greenberg, J.; Massling, A.; Rathbone, J.; Smith, J.; Held, A.; Barsanti, K.; Wehner, B.; Bauer, S.; Wiedensohler, A.; Bonn, B.; Kulmala, M.; Guenther, A.
    New particle formation is of interest because of its influence on the properties of aerosol population, and due to the possible contribution of newly formed particles to cloud condensation nuclei. Currently no conclusive evidence exists as to the mechanism or mechanisms of nucleation and subsequent particle growth. However, nucleation rates exhibit a clear dependence on ambient sulphuric acid concentrations and particle growth is often attributed to the condensation of organic vapours. A detailed study of new particle formation in the Front Range of the Colorado Rocky Mountains is presented here. Gas and particle measurement data for 32 days was analyzed to identify event days, possible event days, and non-event days. A detailed analysis of nucleation and growth is provided for four days on which new particle formation was clearly observed. Evidence for the role of sesquiterpenes in new particle formation is presented.