Search Results

Now showing 1 - 2 of 2
  • Item
    On the composition of ammonia-sulfuric-acid ion clusters during aerosol particle formation
    (München : European Geopyhsical Union, 2015) Schobesberger, S.; Franchin, A.; Bianchi, F.; Rondo, L.; Duplissy, J.; Kürten, A.; Ortega, I.K.; Metzger, A.; Schnitzhofer, R.; Almeida, J.; Amorim, A.; Dommen, J.; Dunne, E.M.; Ehn, M.; Gagné, S.; Ickes, L.; Junninen, H.; Hansel, A.; Kerminen, V.-M.; Kirkby, J.; Kupc, A.; Laaksonen, A.; Lehtipalo, K.; Mathot, S.; Onnela, A.; Petäjä, T.; Riccobono, F.; Santos, F.D.; Sipilä, M.; Tomé, A.; Tsagkogeorgas, G.; Viisanen, Y.; Wagner, P.E.; Wimmer, D.; Curtius, J.; Donahue, N.M.; Baltensperger, U.; Kulmala, M.; Worsnop, D.R.
    The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new-particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia (NH3) and sulfuric acid (H2SO4). Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small NH3–H2SO4 clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from < 2 to 1400 pptv, [H2SO4] from 3.3 × 106 to 1.4 × 109 cm−3 (0.1 to 56 pptv), and a temperature range from −25 to +20 °C. Negatively and positively charged clusters were directly measured by an atmospheric pressure interface time-of-flight (APi-TOF) mass spectrometer, as they initially formed from gas-phase NH3 and H2SO4, and then grew to larger clusters containing more than 50 molecules of NH3 and H2SO4, corresponding to mobility-equivalent diameters greater than 2 nm. Water molecules evaporate from these clusters during sampling and are not observed. We found that the composition of the NH3–H2SO4 clusters is primarily determined by the ratio of gas-phase concentrations [NH3] / [H2SO4], as well as by temperature. Pure binary H2O–H2SO4 clusters (observed as clusters of only H2SO4) only form at [NH3] / [H2SO4] < 0.1 to 1. For larger values of [NH3] / [H2SO4], the composition of NH3–H2SO4 clusters was characterized by the number of NH3 molecules m added for each added H2SO4 molecule n (Δm/Δ n), where n is in the range 4–18 (negatively charged clusters) or 1–17 (positively charged clusters). For negatively charged clusters, Δ m/Δn saturated between 1 and 1.4 for [NH3] / [H2SO4] > 10. Positively charged clusters grew on average by Δm/Δn = 1.05 and were only observed at sufficiently high [NH3] / [H2SO4]. The H2SO4 molecules of these clusters are partially neutralized by NH3, in close resemblance to the acid–base bindings of ammonium bisulfate. Supported by model simulations, we substantiate previous evidence for acid–base reactions being the essential mechanism behind the formation of these clusters under atmospheric conditions and up to sizes of at least 2 nm. Our results also suggest that electrically neutral NH3–H2SO4 clusters, unobservable in this study, have generally the same composition as ionic clusters for [NH3] / [H2SO4] > 10. We expect that NH3–H2SO4 clusters form and grow also mostly by Δm/Δn > 1 in the atmosphere's boundary layer, as [NH3] / [H2SO4] is mostly larger than 10. We compared our results from CLOUD with APi-TOF measurements of NH3–H2SO4 anion clusters during new-particle formation in the Finnish boreal forest. However, the exact role of NH3–H2SO4 clusters in boundary layer particle formation remains to be resolved.
  • Item
    Overview of the international project on biogenic aerosol formation in the boreal forest (BIOFOR)
    (Milton Park : Taylor & Francis, 2001) Kulmala, M.; Hämeri, K.; Aalto, P.P.; Mäkelä, J.M.; Pirjola, L.; Nilsson, E. Douglas; Buzorius, G.; Rannik, Ü.; Dal Maso, M.; Seidl, W.; Hoffman, T.; Janson, R.; Hansson, H.-C.; Viisanen, Y.; Laaksonen, A.; O’dowd, C.D.
    Aerosol formation and subsequent particle growth in ambient air have been frequently observed at a boreal forest site (SMEAR II station) in Southern Finland. The EU funded project BIOFOR (Biogenic aerosol formation in the boreal forest) has focused on: (a) determination of formation mechanisms of aerosol particles in the boreal forest site; (b) verification of emissions of secondary organic aerosols from the boreal forest site; and (c) quantification of the amount of condensable vapours produced in photochemical reactions of biogenic volatile organic compounds (BVOC) leading to aerosol formation. The approach of the project was to combine the continuous measurements with a number of intensive field studies. These field studies were organised in three periods, two of which were during the most intense particle production season and one during a non-event season. Although the exact formation route for 3 nm particles remains unclear, the results can be summarised as follows: Nucleation was always connected to Arctic or Polar air advecting over the site, giving conditions for a stable nocturnal boundary layer followed by a rapid formation and growth of a turbulent convective mixed layer closely followed by formation of new particles. The nucleation seems to occur in the mixed layer or entrainment zone. However two more prerequisites seem to be necessary. A certain threshold of high enough sulphuric acid and ammonia concentrations is probably needed as the number of newly formed particles was correlated with the product of the sulphuric acid production and the ammonia concentrations. No such correlation was found with the oxidation products of terpenes. The condensation sink, i.e., effective particle area, is probably of importance as no nucleation was observed at high values of the condensation sink. From measurement of the hygroscopic properties of the nucleation particles it was found that inorganic compounds and hygroscopic organic compounds contributed both to the particle growth during daytime while at night time organic compounds dominated. Emissions rates for several gaseous compounds was determined. Using four independent ways to estimate the amount of the condensable vapour needed for observed growth of aerosol particles we get an estimate of 2–10×107 vapour molecules cm−3. The estimations for source rate give 7.5–11×104 cm−3 s−1. These results lead to the following conclusions: The most probable formation mechanism is ternary nucleation (water-sulphuric acid-ammonia). After nucleation, growth into observable sizes (~3 nm) is required before new particles appear. The major part of this growth is probably due to condensation of organic vapours. However, there is lack of direct proof of this phenomenon because the composition of 1–5 nm size particles is extremely difficult to determine using the present state-of-art instrumentation.