Search Results

Now showing 1 - 9 of 9
  • Item
    New particle formation and its effect on cloud condensation nuclei abundance in the summer Arctic: A case study in the Fram Strait and Barents Sea
    (Katlenburg-Lindau : EGU, 2019) Kecorius, Simonas; Vogl, Teresa; Paasonen, Pauli; Lampilahti, Janne; Rothenberg, Daniel; Wex, Heike; Zeppenfeld, Sebastian; van Pinxteren, Manuela; Hartmann, Markus; Henning, Silvia; Gong, Xianda; Welti, Andre; Kulmala, Markku; Stratmann, Frank; Herrmann, Hartmut; Wiedensohler, Alfred
    In a warming Arctic the increased occurrence of new particle formation (NPF) is believed to originate from the declining ice coverage during summertime. Understanding the physico-chemical properties of newly formed particles, as well as mechanisms that control both particle formation and growth in this pristine environment, is important for interpreting aerosol-cloud interactions, to which the Arctic climate can be highly sensitive. In this investigation, we present the analysis of NPF and growth in the high summer Arctic. The measurements were made on-board research vessel Polarstern during the PS106 Arctic expedition. Four distinctive NPF and subsequent particle growth events were observed, during which particle (diameter in a range 10-50 nm) number concentrations increased from background values of approx. 40 up to 4000 cm-3. Based on particle formation and growth rates, as well as hygroscopicity of nucleation and the Aitken mode particles, we distinguished two different types of NPF events. First, some NPF events were favored by negative ions, resulting in more-hygroscopic nucleation mode particles and suggesting sulfuric acid as a precursor gas. Second, other NPF events resulted in less-hygroscopic particles, indicating the influence of organic vapors on particle formation and growth. To test the climatic relevance of NPF and its influence on the cloud condensation nuclei (CCN) budget in the Arctic, we applied a zero-dimensional, adiabatic cloud parcel model. At an updraft velocity of 0.1 m s-1, the particle number size distribution (PNSD) generated during nucleation processes resulted in an increase in the CCN number concentration by a factor of 2 to 5 compared to the background CCN concentrations. This result was confirmed by the directly measured CCN number concentrations. Although particles did not grow beyond 50 nm in diameter and the activated fraction of 15-50 nm particles was on average below 10 %, it could be shown that the sheer number of particles produced by the nucleation process is enough to significantly influence the background CCN number concentration. This implies that NPF can be an important source of CCN in the Arctic. However, more studies should be conducted in the future to understand mechanisms of NPF, sources of precursor gases and condensable vapors, as well as the role of the aged nucleation mode particles in Arctic cloud formation. © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.
  • Item
    Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories
    (Katlenburg-Lindau : EGU, 2018) Schmale, Julia; Henning, Silvia; Decesari, Stefano; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Pöhlker, Mira L.; Brito, Joel; Bougiatioti, Aikaterini; Kristensson, Adam; Kalivitis, Nikos; Stavroulas, Iasonas; Carbone, Samara; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Iwamoto, Yoko; Aalto, Pasi; Äijälä, Mikko; Bukowiecki, Nicolas; Ehn, Mikael; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Herrmann, Erik; Herrmann, Hartmut; Holzinger, Rupert; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Nenes, Athanasios; O'Dowd, Colin; Petäjä, Tuukka; Picard, David; Pöhlker, Christopher; Pöschl, Ulrich; Poulain, Laurent; Prévôt, André Stephan Henry; Swietlicki, Erik; Andreae, Meinrat O.; Artaxo, Paulo; Wiedensohler, Alfred; Ogren, John; Matsuki, Atsushi; Yum, Seong Soo; Stratmann, Frank; Baltensperger, Urs; Gysel, Martin
    Aerosol-cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN). Here we present a data set - ready to be used for model validation - of long-term observations of CCN number concentrations, particle number size distributions and chemical composition from 12 sites on 3 continents. Studied environments include coastal background, rural background, alpine sites, remote forests and an urban surrounding. Expectedly, CCN characteristics are highly variable across site categories. However, they also vary within them, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behaviour, most continental stations exhibit very similar activation ratios (relative to particles 20nm) across the range of 0.1 to 1.0% supersaturation. At the coastal sites the transition from particles being CCN inactive to becoming CCN active occurs over a wider range of the supersaturation spectrum. Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g. at Barrow (Arctic haze in spring), at the alpine stations (stronger influence of polluted boundary layer air masses in summer), the rain forest (wet and dry season) or Finokalia (wildfire influence in autumn). The rural background and urban sites exhibit relatively little variability throughout the year, while short-term variability can be high especially at the urban site. The average hygroscopicity parameter, calculated from the chemical composition of submicron particles was highest at the coastal site of Mace Head (0.6) and lowest at the rain forest station ATTO (0.2-0.3). We performed closure studies based on -Köhler theory to predict CCN number concentrations. The ratio of predicted to measured CCN concentrations is between 0.87 and 1.4 for five different types of . The temporal variability is also well captured, with Pearson correlation coefficients exceeding 0.87. Information on CCN number concentrations at many locations is important to better characterise ACI and their radiative forcing. But long-term comprehensive aerosol particle characterisations are labour intensive and costly. Hence, we recommend operating migrating-CCNCs to conduct collocated CCN number concentration and particle number size distribution measurements at individual locations throughout one year at least to derive a seasonally resolved hygroscopicity parameter. This way, CCN number concentrations can only be calculated based on continued particle number size distribution information and greater spatial coverage of long-term measurements can be achieved.
  • Item
    Evaporation of sulfate aerosols at low relative humidity
    (Katlenburg-Lindau : EGU, 2017) Tsagkogeorgas, Georgios; Roldin, Pontus; Duplissy, Jonathan; Rondo, Linda; Tröstl, Jasmin; Slowik, Jay G.; Ehrhart, Sebastian; Franchin, Alessandro; Kürten, Andreas; Amorim, Antonio; Bianchi, Federico; Kirkby, Jasper; Petäjä, Tuukka; Baltensperger, Urs; Boy, Michael; Curtius, Joachim; Flagan, Richard C.; Kulmala, Markku; Donahue, Neil M.; Stratmann, Frank
    Evaporation of sulfuric acid from particles can be important in the atmospheres of Earth and Venus. However, the equilibrium constant for the dissociation of H2SO4 to bisulfate ions, which is the one of the fundamental parameters controlling the evaporation of sulfur particles, is not well constrained. In this study we explore the volatility of sulfate particles at very low relative humidity. We measured the evaporation of sulfur particles versus temperature and relative humidity in the CLOUD chamber at CERN. We modelled the observed sulfur particle shrinkage with the ADCHAM model. Based on our model results, we conclude that the sulfur particle shrinkage is mainly governed by H2SO4 and potentially to some extent by SO3 evaporation. We found that the equilibrium constants for the dissociation of H2SO4 to HSO4-(KH2SO4) and the dehydration of H2SO4 to SO3 (KSO3) are KH2SO4 Combining double low line 2-4 × 109 kg-1 and KSO3 ≥ 1.4 × g 1010 at 288.8± 5K.
  • Item
    Ion-induced nucleation of pure biogenic particles
    (London : Nature Publishing Group, 2016) Kirkby, Jasper; Duplissy, Jonathan; Sengupta, Kamalika; Gordon, Hamish; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K.; Wagner, Robert; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill; Dias, Antonio; Ehrhart, Sebastian; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P.; Pringle, Kirsty; Rap, Alexandru; Richards, Nigel A.D.; Riipinen, Ilona; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E.; Seinfeld, John H.; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander L.; Wagner, Andrea C.; Wagner, Paul E.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M.; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku; Carslaw, Kenneth S.; Curtius, Joachim
    Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood1. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours2. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere3,4, and that ions have a relatively minor role5. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded6,7. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.
  • Item
    Hydroxyl radical-induced formation of highly oxidized organic compounds
    (London : Nature Publishing Group, 2016) Berndt, Torsten; Richters, Stefanie; Jokinen, Tuija; Hyttinen, Noora; Kurtén, Theo; Otkjær, Rasmus V.; Kjaergaard, Henrik G.; Stratmann, Frank; Herrmann, Hartmut; Sipila, Mikko; Kulmala, Markku; Ehn, Mikael
    Explaining the formation of secondary organic aerosol is an intriguing question in atmospheric sciences because of its importance for Earth’s radiation budget and the associated effects on health and ecosystems. A breakthrough was recently achieved in the understanding of secondary organic aerosol formation from ozone reactions of biogenic emissions by the rapid formation of highly oxidized multifunctional organic compounds via autoxidation. However, the important daytime hydroxyl radical reactions have been considered to be less important in this process. Here we report measurements on the reaction of hydroxyl radicals with a- and b-pinene applying improved mass spectrometric methods. Our laboratory results prove that the formation of highly oxidized products from hydroxyl radical reactions proceeds with considerably higher yields than previously reported. Field measurements support these findings. Our results allow for a better description of the diurnal behaviour of the highly oxidized product formation and subsequent secondary organic aerosol formation in the atmosphere.
  • Item
    Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of α-pinene
    (München : European Geopyhsical Union, 2016) Ignatius, Karoliina; Kristensen, Thomas B.; Järvinen, Emma; Nichman, Leonid; Fuchs, Claudia; Gordon, Hamish; Herenz, Paul; Hoyle, Christopher R.; Duplissy, Jonathan; Garimella, Sarvesh; Dias, Antonio; Frege, Carla; Höppel, Niko; Tröstl, Jasmin; Wagner, Robert; Yan, Chao; Amorim, Antonio; Baltensperger, Urs; Curtius, Joachim; Donahue, Neil M.; Gallagher, Martin W.; Kirkby, Jasper; Kulmala, Markku; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Dulac, François; Tomé, Antonio; Virtanen, Annele; Worsnop, Douglas; Stratmann, Frank
    There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate heterogeneous ice nucleation and thus influence cloud properties. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles. The SOA particles were produced from the ozone initiated oxidation of α-pinene in an aerosol chamber at temperatures in the range from −38 to −10 °C at 5–15 % relative humidity with respect to water to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. The ice nucleation ability of SOA particles with different sizes was investigated with a new continuous flow diffusion chamber. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA for ice saturation ratios between 1.3 and 1.4 significantly below the homogeneous freezing limit. The maximum frozen fractions found at temperatures between −39.0 and −37.2 °C ranged from 6 to 20 % and did not depend on the particle surface area. Global modelling of monoterpene SOA particles suggests that viscous biogenic SOA particles are indeed present in regions where cirrus cloud formation takes place. Hence, they could make up an important contribution to the global ice nucleating particle budget.
  • Item
    Observation of viscosity transition in α-pinene secondary organic aerosol
    (München : European Geopyhsical Union, 2016) Järvinen, Emma; Ignatius, Karoliina; Nichman, Leonid; Kristensen, Thomas B.; Fuchs, Claudia; Hoyle, Christopher R.; Höppel, Niko; Corbin, Joel C.; Craven, Jill; Duplissy, Jonathan; Ehrhart, Sebastian; El Haddad, Imad; Frege, Carla; Gordon, Hamish; Jokinen, Tuija; Kallinger, Peter; Kirkby, Jasper; Kiselev, Alexei; Naumann, Karl-Heinz; Petäjä, Tuukka; Pinterich, Tamara; Prevot, Andre S.H.; Saathoff, Harald; Schiebel, Thea; Sengupta, Kamalika; Simon, Mario; Slowik, Jay G.; Tröstl, Jasmin; Virtanen, Annele; Vochezer, Paul; Vogt, Steffen; Wagner, Andrea C.; Wagner, Robert; Williamson, Christina; Winkler, Paul M.; Yan, Chao; Baltensperger, Urs; Donahue, Neil M.; Flagan, Rick C.; Gallagher, Martin; Hansel, Armin; Kulmala, Markku; Stratmann, Frank; Worsnop, Douglas R.; Möhler, Ottmar; Leisner, Thomas; Schnaiter, Martin
    Under certain conditions, secondary organic aerosol (SOA) particles can exist in the atmosphere in an amorphous solid or semi-solid state. To determine their relevance to processes such as ice nucleation or chemistry occurring within particles requires knowledge of the temperature and relative humidity (RH) range for SOA to exist in these states. In the Cosmics Leaving Outdoor Droplets (CLOUD) experiment at The European Organisation for Nuclear Research (CERN), we deployed a new in situ optical method to detect the viscous state of α-pinene SOA particles and measured their transition from the amorphous highly viscous state to states of lower viscosity. The method is based on the depolarising properties of laboratory-produced non-spherical SOA particles and their transformation to non-depolarising spherical particles at relative humidities near the deliquescence point. We found that particles formed and grown in the chamber developed an asymmetric shape through coagulation. A transition to a spherical shape was observed as the RH was increased to between 35 % at −10 °C and 80 % at −38 °C, confirming previous calculations of the viscosity-transition conditions. Consequently, α-pinene SOA particles exist in a viscous state over a wide range of ambient conditions, including the cirrus region of the free troposphere. This has implications for the physical, chemical, and ice-nucleation properties of SOA and SOA-coated particles in the atmosphere.
  • Item
    Horizontal homogeneity and vertical extent of new particle formation events
    (Milton Park : Taylor & Francis, 2017) Wehner, Birgit; Siebert, Holger; Stratmann, Frank; Tuch, Thomas; Wiedensohler, Alfred; PetäJä, Tuukka; Dal Maso, Miikka; Kulmala, Markku
    During the SATURN campaign 2002, new particle formation, i.e. the occurrence of ultrafine particles was investigated simultaneously at four ground-based measurement sites. The maximum distance between the sites was 50 km. Additionally, vertical profiles of aerosol particles from 5–10 nm have been measured by a tethered-balloonborne system at one of the sites. In general, two different scenarios have been found: (i) new particle formation was measured at all sites nearly in parallel with subsequent particle growth (homogeneous case) and (ii) new particle formation was observed at one to three sites irregularly (inhomogeneous case) where subsequent particle growth was often interrupted. The homogeneous case was connected with stable synoptical conditions, i.e. the region was influenced by a high pressure system. Here, the horizontal extent of the phenomenon has been estimated to be 400 km at maximum. In the vertical dimension, the ultrafine particles are well mixed within the entire boundary layer. In the inhomogeneous case the new particle formation depends mainly on the incoming solar radiation and was often interrupted due the occurrence of clouds. Thus, single point measurements are not representative for a larger region in that case.
  • Item
    Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition
    (London : Nature Publ. Group, 2017) Schmale, Julia; Henning, Silvia; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Bougiatioti, Aikaterini; Kalivitis, Nikos; Stavroulas, Iasonas; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Kristensson, Adam; Iwamoto, Yoko; Pringle, Kirsty; Reddington, Carly; Aalto, Pasi; Äijälä, Mikko; Baltensperger, Urs; Bialek, Jakub; Birmili, Wolfram; Bukowiecki, Nicolas; Ehn, Mikael; Fjæraa, Ann Mari; Fiebig, Markus; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Furuya, Masaki; Hammer, Emanuel; Heikkinen, Liine; Herrmann, Erik; Holzinger, Rupert; Hyono, Hiroyuki; Kanakidou, Maria; Kiendler-Scharr, Astrid; Kinouchi, Kento; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Motos, Ghislain; Nenes, Athanasios; O’Dowd, Colin; Paramonov, Mikhail; Petäjä, Tuukka; Picard, David; Poulain, Laurent; Prévôt, André Stephan Henry; Slowik, Jay; Sonntag, Andre; Swietlicki, Erik; Svenningsson, Birgitta; Tsurumaru, Hiroshi; Wiedensohler, Alfred; Wittbom, Cerina; Ogren, John A.; Matsuki, Atsushi; Yum, Seong Soo; Myhre, Cathrine Lund; Carslaw, Ken; Stratmann, Frank; Gysel, Martin
    Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment.