Search Results

Now showing 1 - 4 of 4
  • Item
    Atmospheric new particle formation at the research station Melpitz, Germany: Connection with gaseous precursors and meteorological parameters
    (Katlenburg-Lindau : EGU, 2018) Größ, Johannes; Hamed, Amar; Sonntag, André; Spindler, Gerald; Manninen, Hanna Elina; Nieminen, Tuomo; Kulmala, Markku; Hõrrak, Urmas; Plass-Dülmer, Christian; Wiedensohler, Alfred; Birmili, Wolfram
    This paper revisits the atmospheric new particle formation (NPF) process in the polluted Central European troposphere, focusing on the connection with gas-phase precursors and meteorological parameters. Observations were made at the research station Melpitz (former East Germany) between 2008 and 2011 involving a neutral cluster and air ion spectrometer (NAIS). Particle formation events were classified by a new automated method based on the convolution integral of particle number concentration in the diameter interval 2-20 nm. To study the relevance of gaseous sulfuric acid as a precursor for nucleation, a proxy was derived on the basis of direct measurements during a 1-month campaign in May 2008. As a major result, the number concentration of freshly produced particles correlated significantly with the concentration of sulfur dioxide as the main precursor of sulfuric acid. The condensation sink, a factor potentially inhibiting NPF events, played a subordinate role only. The same held for experimentally determined ammonia concentrations. The analysis of meteorological parameters confirmed the absolute need for solar radiation to induce NPF events and demonstrated the presence of significant turbulence during those events. Due to its tight correlation with solar radiation, however, an independent effect of turbulence for NPF could not be established. Based on the diurnal evolution of aerosol, gas-phase, and meteorological parameters near the ground, we further conclude that the particle formation process is likely to start in elevated parts of the boundary layer rather than near ground level.
  • Item
    Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories
    (Katlenburg-Lindau : EGU, 2018) Schmale, Julia; Henning, Silvia; Decesari, Stefano; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Pöhlker, Mira L.; Brito, Joel; Bougiatioti, Aikaterini; Kristensson, Adam; Kalivitis, Nikos; Stavroulas, Iasonas; Carbone, Samara; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Iwamoto, Yoko; Aalto, Pasi; Äijälä, Mikko; Bukowiecki, Nicolas; Ehn, Mikael; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Herrmann, Erik; Herrmann, Hartmut; Holzinger, Rupert; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Nenes, Athanasios; O'Dowd, Colin; Petäjä, Tuukka; Picard, David; Pöhlker, Christopher; Pöschl, Ulrich; Poulain, Laurent; Prévôt, André Stephan Henry; Swietlicki, Erik; Andreae, Meinrat O.; Artaxo, Paulo; Wiedensohler, Alfred; Ogren, John; Matsuki, Atsushi; Yum, Seong Soo; Stratmann, Frank; Baltensperger, Urs; Gysel, Martin
    Aerosol-cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN). Here we present a data set - ready to be used for model validation - of long-term observations of CCN number concentrations, particle number size distributions and chemical composition from 12 sites on 3 continents. Studied environments include coastal background, rural background, alpine sites, remote forests and an urban surrounding. Expectedly, CCN characteristics are highly variable across site categories. However, they also vary within them, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behaviour, most continental stations exhibit very similar activation ratios (relative to particles 20nm) across the range of 0.1 to 1.0% supersaturation. At the coastal sites the transition from particles being CCN inactive to becoming CCN active occurs over a wider range of the supersaturation spectrum. Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g. at Barrow (Arctic haze in spring), at the alpine stations (stronger influence of polluted boundary layer air masses in summer), the rain forest (wet and dry season) or Finokalia (wildfire influence in autumn). The rural background and urban sites exhibit relatively little variability throughout the year, while short-term variability can be high especially at the urban site. The average hygroscopicity parameter, calculated from the chemical composition of submicron particles was highest at the coastal site of Mace Head (0.6) and lowest at the rain forest station ATTO (0.2-0.3). We performed closure studies based on -Köhler theory to predict CCN number concentrations. The ratio of predicted to measured CCN concentrations is between 0.87 and 1.4 for five different types of . The temporal variability is also well captured, with Pearson correlation coefficients exceeding 0.87. Information on CCN number concentrations at many locations is important to better characterise ACI and their radiative forcing. But long-term comprehensive aerosol particle characterisations are labour intensive and costly. Hence, we recommend operating migrating-CCNCs to conduct collocated CCN number concentration and particle number size distribution measurements at individual locations throughout one year at least to derive a seasonally resolved hygroscopicity parameter. This way, CCN number concentrations can only be calculated based on continued particle number size distribution information and greater spatial coverage of long-term measurements can be achieved.
  • Item
    Spatial, temporal and source contribution assessments of black carbon over the northern interior of South Africa
    (Katlenburg-Lindau : EGU, 2017) Chiloane, Kgaugelo Euphinia; Beukes, Johan Paul; van Zyl, Pieter Gideon; Maritz, Petra; Vakkari, Ville; Josipovic, Miroslav; Venter, Andrew Derick; Jaars, Kerneels; Tiitta, Petri; Kulmala, Markku; Wiedensohler, Alfred; Liousse, Catherine; Mkhatshwa, Gabisile Vuyisile; Ramandh, Avishkar; Laakso, Lauri
    After carbon dioxide (CO2), aerosol black carbon (BC) is considered to be the second most important contributor to global warming. This paper presents equivalent black carbon (eBC) (derived from an optical absorption method) data collected from three sites in the interior of South Africa where continuous measurements were conducted, i.e. Elandsfontein, Welgegund and Marikana, as well elemental carbon (EC) (determined by evolved carbon method) data at five sites where samples were collected once a month on a filter and analysed offline, i.e. Louis Trichardt, Skukuza, Vaal Triangle, Amersfoort and Botsalano. Analyses of eBC and EC spatial mass concentration patterns across the eight sites indicate that the mass concentrations in the South African interior are in general higher than what has been reported for the developed world and that different sources are likely to influence different sites. The mean eBC or EC mass concentrations for the background sites (Welgegund, Louis Trichardt, Skukuza, Botsalano) and sites influenced by industrial activities and/or nearby settlements (Elandsfontein, Marikana, Vaal Triangle and Amersfoort) ranged between 0.7 and 1.1, and 1.3 and 1.4 μg m-3, respectively. Similar seasonal patterns were observed at all three sites where continuous measurement data were collected (Elandsfontein, Marikana and Welgegund), with the highest eBC mass concentrations measured from June to October, indicating contributions from household combustion in the cold winter months (June-August), as well as savannah and grassland fires during the dry season (May to mid-October). Diurnal patterns of eBC at Elandsfontein, Marikana and Welgegund indicated maximum concentrations in the early mornings and late evenings, and minima during daytime. From the patterns it could be deduced that for Marikana and Welgegund, household combustion, as well as savannah and grassland fires, were the most significant sources, respectively. Possible contributing sources were explored in greater detail for Elandsfontein, with five main sources being identified as coal-fired power stations, pyrometallurgical smelters, traffic, household combustion, as well as savannah and grassland fires. Industries on the Mpumalanga Highveld are often blamed for all forms of pollution, due to the NO2 hotspot over this area that is attributed to NOx emissions from industries and vehicle emissions from the Johannesburg. Pretoria megacity. However, a comparison of source strengths indicated that household combustion as well as savannah and grassland fires were the most significant sources of eBC, particularly during winter and spring months, while coal-fired power stations, pyrometallurgical smelters and traffic contribute to eBC mass concentration levels year round.
  • Item
    A European aerosol phenomenology - 6: Scattering properties of atmospheric aerosol particles from 28 ACTRIS sites
    (Katlenburg-Lindau : EGU, 2018) Pandolfi, Marco; Alados-Arboledas, Lucas; Alastuey, Andrés; Andrade, Marcos; Angelov, Christo; Artiñano, Begoña; Backman, John; Baltensperger, Urs; Bonasoni, Paolo; Bukowiecki, Nicolas; Collaud Coen, Martine; Conil, Sébastien; Coz, Esther; Crenn, Vincent; Dudoitis, Vadimas; Ealo, Marina; Eleftheriadis, Kostas; Favez, Olivier; Fetfatzis, Prodromos; Fiebig, Markus; Flentje, Harald; Ginot, Patrick; Gysel, Martin; Henzing, Bas; Hoffer, Andras; Holubova Smejkalova, Adela; Kalapov, Ivo; Kalivitis, Nikos; Kouvarakis, Giorgos; Kristensson, Adam; Kulmala, Markku; Lihavainen, Heikki; Lunder, Chris; Luoma, Krista; Lyamani, Hassan; Marinoni, Angela; Mihalopoulos, Nikos; Moerman, Marcel; Nicolas, José; O'Dowd, Colin; Petäjä, Tuukka; Petit, Jean-Eudes; Pichon, Jean Marc; Prokopciuk, Nina; Putaud, Jean-Philippe; Rodríguez, Sergio; Sciare, Jean; Sellegri, Karine; Swietlicki, Erik; Titos, Gloria; Tuch, Thomas; Tunved, Peter; Ulevicius, Vidmantas; Vaishya, Aditya; Vana, Milan; Virkkula, Aki; Vratolis, Stergios; Weingartner, Ernest; Wiedensohler, Alfred; Laj, Paolo
    This paper presents the light-scattering properties of atmospheric aerosol particles measured over the past decade at 28 ACTRIS observatories, which are located mainly in Europe. The data include particle light scattering (σsp) and hemispheric backscattering (σbsp) coefficients, scattering Ångström exponent (SAE), backscatter fraction (BF) and asymmetry parameter (g). An increasing gradient of σsp is observed when moving from remote environments (arctic/mountain) to regional and to urban environments. At a regional level in Europe, σsp also increases when moving from Nordic and Baltic countries and from western Europe to central/eastern Europe, whereas no clear spatial gradient is observed for other station environments. The SAE does not show a clear gradient as a function of the placement of the station. However, a west-to-east-increasing gradient is observed for both regional and mountain placements, suggesting a lower fraction of fine-mode particle in western/south-western Europe compared to central and eastern Europe, where the fine-mode particles dominate the scattering. The g does not show any clear gradient by station placement or geographical location reflecting the complex relationship of this parameter with the physical properties of the aerosol particles. Both the station placement and the geographical location are important factors affecting the intraannual variability. At mountain sites, higher σsp and SAE values are measured in the summer due to the enhanced boundary layer influence and/or new particle-formation episodes. Conversely, the lower horizontal and vertical dispersion during winter leads to higher σsp values at all low-altitude sites in central and eastern Europe compared to summer. These sites also show SAE maxima in the summer (with corresponding g minima). At all sites, both SAE and g show a strong variation with aerosol particle loading. The lowest values of g are always observed together with low σsp values, indicating a larger contribution from particles in the smaller accumulation mode. During periods of high σsp values, the variation of g is less pronounced, whereas the SAE increases or decreases, suggesting changes mostly in the coarse aerosol particle mode rather than in the fine mode. Statistically significant decreasing trends of σsp are observed at 5 out of the 13 stations included in the trend analyses. The total reductions of σsp are consistent with those reported for PM2.5 and PM10 mass concentrations over similar periods across Europe.