Search Results

Now showing 1 - 10 of 10
Loading...
Thumbnail Image
Item

Hydrological extremes and security

2015, Kundzewicz, Z.W., Matczak, P.

Loading...
Thumbnail Image
Item

Understanding flood regime changes in Europe: A state-of-the-art assessment

2014, Hall, J., Arheimer, B., Borga, M., Brázdil, R., Claps, P., Kiss, A., Kjeldsen, T.R., Kriauĉuniene, J., Kundzewicz, Z.W., Lang, M., Llasat, M.C., Macdonald, N., McIntyre, N., Mediero, L., Merz, B., Merz, R., Molnar, P., Montanari, A., Neuhold, C., Parajka, J., Perdigão, R.A.P., Plavcová, L., Rogger, M., Salinas, J.L., Sauquet, E., Schär, C., Szolgay, J., Viglione, A., Blöschl, G.

There is growing concern that flooding is becoming more frequent and severe in Europe. A better understanding of flood regime changes and their drivers is therefore needed. The paper reviews the current knowledge on flood regime changes in European rivers that has traditionally been obtained through two alternative research approaches. The first approach is the data-based detection of changes in observed flood events. Current methods are reviewed together with their challenges and opportunities. For example, observation biases, the merging of different data sources and accounting for nonlinear drivers and responses. The second approach consists of modelled scenarios of future floods. Challenges and opportunities associated with flood change scenarios are discussed such as fully accounting for uncertainties in the modelling cascade and feedbacks. To make progress in flood change research, we suggest that a synthesis of these two approaches is needed. This can be achieved by focusing on long duration records and flood-rich and flood-poor periods rather than on short duration flood trends only, by formally attributing causes of observed flood changes, by validating scenarios against observed flood regime dynamics, and by developing low-dimensional models of flood changes and feedbacks. The paper finishes with a call for a joint European flood change research network.

Loading...
Thumbnail Image
Item

Climate change track in river floods in Europe

2015, Kundzewicz, Z.W.

Loading...
Thumbnail Image
Item

Adapting flood preparedness tools to changing flood risk conditions: The situation in Poland

2014, Kundzewicz, Z.W.

Flooding is the most destructive natural hazard in the Baltic Sea Basin in general and in Poland in particular. The notion includes floods from rivers and mountain torrents, as well as floods from sea surges in coastal areas, and floods from sewage systems. There have been several large floods in Poland in the last century and in recent decades, with damage exceeding 1% of the Polish GDP. The spatial and temporal characteristics of the flood risk in Poland are reviewed and observations and projections of changes in the flood hazard in the country are discussed. Furthermore, flood defences and flood preparedness systems in Poland are examined, with particular reference to the European Union (EU) Floods Directive, which is being implemented in Poland, an EU country. Finally, the public debate on flood risk and flood preparedness is reviewed.

Loading...
Thumbnail Image
Item

Analysis of changes in climate and river discharge with focus on seasonal runoff predictability in the Aksu River Basin

2014, Kundzewicz, Z.W., Merz, B., Vorogushyn, S., Hartmann, H., Duethmann, D., Wortmann, M., Huang, Sh., Su, B., Jiang, T., Krysanova, V.

The River Aksu is the principal tributary to the River Tarim, providing about three quarters of its discharge. It originates in Kyrgyzstan and flows into the arid areas of the Xinjiang Uyghur Autonomous Region in China, where an extensive irrigated agriculture has been developed in the river oases. The aim of the present contribution is to review the current trends in temperature, precipitation, and river discharge and links between these variables. The temperature in the region and the river discharge have been rising. Changes were studied using multiple trend analyses with different start and end years. Correlations between daily temperature and discharge are high and statistically significant for two headwater subcatchments of the Aksu for most of the time. However, there are episodes in late summer or beginning of autumn when correlations between temperature and discharge for the Xiehela station are absent. This can only be explained by Glacial Lake Outburst Floods from the Lake Merzbacher that are not routinely monitored. On an annual time scale, changes in summer discharge in the highly glacierized Xiehela subcatchment are dominated by changes in temperature. In contrast, in the subcatchment Shaliguilanke, variations in summer streamflow are more strongly influenced by variations in precipitation. A comparison of links between climatic variables and streamflow at different temporal scales is offered. Perspectives for seasonal forecasting are examined.

Loading...
Thumbnail Image
Item

Integrating risks of climate change into water management

2014, Döll, P., Jiménez-Cisneros, B., Oki, T., Arnell, N.W., Benito, G., Cogley, J.G., Jiang, T., Kundzewicz, Z.W., Mwakalila, S., Nishijima, A.

[No abstract available]

Loading...
Thumbnail Image
Item

Joint Editorial "on the future of journal publications in hydrology"

2014, Blöschl, G., Bárdossy, A., Koutsoyiannis, D., Kundzewicz, Z.W., Littlewood, I., Montanari, A., Savenije, H.

[No abstract available]

Loading...
Thumbnail Image
Item

Flood risk governance arrangements in Europe

2015, Matczak, P., Lewandowski, J., Choryński, A., Szwed, M., Kundzewicz, Z.W.

Loading...
Thumbnail Image
Item

Extreme hydrological events and security

2015, Kundzewicz, Z.W., Matczak, P.

Loading...
Thumbnail Image
Item

Flood risk and climate change: global and regional perspectives

2014, Kundzewicz, Z.W., Kanae, S., Seneviratne, S.I., Handmer, J., Nicholls, N., Peduzzi, P., Mechler, R., Bouwer, L.M., Arnell, N., Mach, K., Muir-Wood, R., Brakenridge, G.R., Kron, W., Benito, G., Honda, Y., Takahashi, K., Sherstyukov, B.

A holistic perspective on changing rainfall-driven flood risk is provided for the late 20th and early 21st centuries. Economic losses from floods have greatly increased, principally driven by the expanding exposure of assets at risk. It has not been possible to attribute rain-generated peak streamflow trends to anthropogenic climate change over the past several decades. Projected increases in the frequency and intensity of heavy rainfall, based on climate models, should contribute to increases in precipitation-generated local flooding (e.g. flash flooding and urban flooding). This article assesses the literature included in the IPCC SREX report and new literature published since, and includes an assessment of changes in flood risk in seven of the regions considered in the recent IPCC SREX report-Africa, Asia, Central and South America, Europe, North America, Oceania and Polar regions. Also considering newer publications, this article is consistent with the recent IPCC SREX assessment finding that the impacts of climate change on flood characteristics are highly sensitive to the detailed nature of those changes and that presently we have only low confidence1 in numerical projections of changes in flood magnitude or frequency resulting from climate change.