Search Results

Now showing 1 - 7 of 7
  • Item
    Brief Communication: An update of the article "modelling flood damages under climate change conditions-a case study for Germany"
    (Göttingen : Copernicus GmbH, 2016) Fokko Hattermann, F.; Huang, S.; Burghoff, O.; Hoffmann, P.; Kundzewicz, Z.W.
  • Item
    Climate change and its effect on agriculture, water resources and human health sectors in Poland
    (Göttingen : Copernicus GmbH, 2010) Szwed, M.; Karg, G.; Pińskwar, I.; Radziejewski, M.; Graczyk, D.; Kȩdziora, A.; Kundzewicz, Z.W.
    Multi-model ensemble climate projections in the ENSEMBLES Project of the EU allowed the authors to quantify selected extreme-weather indices for Poland, of importance to climate impacts on systems and sectors. Among indices were: number of days in a year with high value of the heat index; with high maximum and minimum temperatures; length of vegetation period; and number of consecutive dry days. Agricultural, hydrological, and human health indices were applied to evaluate the changing risk of weather extremes in Poland in three sectors. To achieve this, model-based simulations were compared for two time horizons, a century apart, i.e., 1961-1990 and 2061-2090. Climate changes, and in particular increases in temperature and changes in rainfall, have strong impacts on agriculture via weather extremes-droughts and heat waves. The crop yield depends particularly on water availability in the plant development phase. To estimate the changes in present and future yield of two crops important for Polish agriculture i.e., potatoes and wheat, some simple empirical models were used. For these crops, decrease of yield is projected for most of the country, with national means of yield change being:-2.175 t/ha for potatoes and-0.539 t/ha for wheat. Already now, in most of Poland, evapotranspiration exceeds precipitation during summer, hence the water storage (in surface water bodies, soil and ground) decreases. Summer precipitation deficit is projected to increase considerably in the future. The additional water supplies (above precipitation) needed to use the agro-potential of the environment would increase by half. Analysis of water balance components (now and in the projected future) can corroborate such conclusions. As regards climate and health, a composite index, proposed in this paper, is a product of the number of senior discomfort days and the number of seniors (aged 65+). The value of this index is projected to increase over 8-fold during 100 years. This is an effect of both increase in the number of seniors (over twofold) and the number of senior-discomfort days (nearly fourfold).
  • Item
    Hydrological extremes and security
    (Göttingen : Copernicus GmbH, 2015) Kundzewicz, Z.W.; Matczak, P.
  • Item
    Flood risk governance arrangements in Europe
    (Göttingen : Copernicus GmbH, 2015) Matczak, P.; Lewandowski, J.; Choryński, A.; Szwed, M.; Kundzewicz, Z.W.
  • Item
    Understanding flood regime changes in Europe: A state-of-the-art assessment
    (Göttingen : Copernicus GmbH, 2014) Hall, J.; Arheimer, B.; Borga, M.; Brázdil, R.; Claps, P.; Kiss, A.; Kjeldsen, T.R.; Kriauĉuniene, J.; Kundzewicz, Z.W.; Lang, M.; Llasat, M.C.; Macdonald, N.; McIntyre, N.; Mediero, L.; Merz, B.; Merz, R.; Molnar, P.; Montanari, A.; Neuhold, C.; Parajka, J.; Perdigão, R.A.P.; Plavcová, L.; Rogger, M.; Salinas, J.L.; Sauquet, E.; Schär, C.; Szolgay, J.; Viglione, A.; Blöschl, G.
    There is growing concern that flooding is becoming more frequent and severe in Europe. A better understanding of flood regime changes and their drivers is therefore needed. The paper reviews the current knowledge on flood regime changes in European rivers that has traditionally been obtained through two alternative research approaches. The first approach is the data-based detection of changes in observed flood events. Current methods are reviewed together with their challenges and opportunities. For example, observation biases, the merging of different data sources and accounting for nonlinear drivers and responses. The second approach consists of modelled scenarios of future floods. Challenges and opportunities associated with flood change scenarios are discussed such as fully accounting for uncertainties in the modelling cascade and feedbacks. To make progress in flood change research, we suggest that a synthesis of these two approaches is needed. This can be achieved by focusing on long duration records and flood-rich and flood-poor periods rather than on short duration flood trends only, by formally attributing causes of observed flood changes, by validating scenarios against observed flood regime dynamics, and by developing low-dimensional models of flood changes and feedbacks. The paper finishes with a call for a joint European flood change research network.
  • Item
    Extreme hydrological events and security
    (Göttingen : Copernicus GmbH, 2015) Kundzewicz, Z.W.; Matczak, P.
  • Item
    Climate change track in river floods in Europe
    (Göttingen : Copernicus GmbH, 2015) Kundzewicz, Z.W.