Search Results

Now showing 1 - 6 of 6
  • Item
    In situ spectroelectrochemical and theoretical study on the oxidation of a 4H-imidazole-ruthenium dye adsorbed on nanocrystalline TiO2 thin film electrodes
    (Cambridge : RSC Publ., 2015) Zhang, Ying; Kupfer, Stephan; Zedler, Linda; Schindler, Julian; Bocklitz, Thomas; Guthmuller, Julien; Rau, Sven; Dietzek, Benjamin
    Terpyridine 4H-imidazole-ruthenium(II) complexes are considered promising candidates for use as sensitizers in dye sensitized solar cells (DSSCs) by displaying broad absorption in the visible range, where the dominant absorption features are due to metal-to-ligand charge transfer (MLCT) transitions. The ruthenium(III) intermediates resulting from photoinduced MLCT transitions are essential intermediates in the photoredox-cycle of the DSSC. However, their photophysics is much less studied compared to the ruthenium(II) parent systems. To this end, the structural alterations accompanying one-electron oxidation of the RuIm dye series (including a non-carboxylic RuIm precursor, and, carboxylic RuImCOO in solution and anchored to a nanocrystalline TiO2 film) are investigated via in situ experimental and theoretical UV-Vis absorption and resonance Raman (RR) spectroelectrochemistry. The excellent agreement between the experimental and the TDDFT spectra derived in this work allows for an in-depth assignment of UV-Vis and RR spectral features of the dyes. A concordant pronounced wavelength dependence with respect to the charge transfer character has been observed for the model system RuIm, and both RuImCOO in solution and attached on the TiO2 surface. Excitation at long wavelengths leads to the population of ligand-to-metal charge transfer states, i.e. photoreduction of the central ruthenium(III) ion, while high-energy excitation features an intra-ligand charge transfer state localized on the 4H-imidazole moiety. Therefore, these 4H-imidazole ruthenium complexes investigated here are potential multi-photoelectron donors. One electron is donated from MLCT states, and additionally, the 4H-imidazole ligand reveals electron-donating character with a significant contribution to the excited states of the ruthenium(III) complexes upon blue-light irradiation.
  • Item
    Photophysics of BODIPY dyes as readily designable photosensitisers in light-driven proton reduction
    (Basel : MDPI, 2017) Dura, Laura; Wächtler, Maria; Kupfer, Stephan; Kübel, Joachim; Ahrens, Johannes; Höfler, Sebastian; Bröring, Martin; Dietzek, Benjamin; Beweries, Torsten
    A series of boron dipyrromethene (BODIPY) dyes was tested as photosensitisers for light-driven hydrogen evolution in combination with the complex [Pd(PPh3)Cl2]2 as a source for catalytically-active Pd nanoparticles and triethylamine as a sacrificial electron donor. In line with earlier reports, halogenated dyes showed significantly higher hydrogen production activity. All BODIPYs were fully characterised using stationary absorption and emission spectroscopy. Time-resolved spectroscopic investigations on meso-mesityl substituted compounds revealed that reduction of the photo-excited BODIPY by the sacrificial agent occurs from an excited singlet state, while, in halogenated species, long-lived triplet states are present, determining electron transfer processes from the sacrificial agent. Quantum chemical calculations performed at the time-dependent density functional level of theory indicate that the differences in the photocatalytic performance of the present series of dyes can be correlated to the varying efficiency of intersystem crossing in non-halogenated and halogenated species and not to alterations in the energy levels introduced upon substitution.
  • Item
    Light-responsive paper strips as CO-releasing material with a colourimetric response
    (Cambridge : RSC Publishing, 2017) Reddy G., Upendar; Liu, Jingjing; Hoffmann, Patrick; Steinmetzer, Johannes; Görls, Helmar; Kupfer, Stephan; Askes, Sven H. C.; Neugebauer, Ute; Gräfe, Stefanie; Schiller, Alexander
    Carbon monoxide (CO) is known for its multifaceted role in human physiology, and molecules that release CO in a controlled way have been proposed as therapeutic drugs. In this work, a light-responsive CO-releasing molecule (CORM-Dabsyl) showed a strong colourimetric response upon photochemical CO-release, owing to the tight conjugation of a Mn(i) tricarbonyl centre to a dabsyl chromophoric ligand (L). Whereas the complex was very stable in the dark in nitrogen-purged aqueous media, CO-release was effectively triggered using 405 nm irradiation. CORM-Dabsyl, L and the inactive product iCORM-Dabsyl have been investigated by DFT and TD-DFT calculations. Only mild toxicity of CORM-Dabsyl was observed against LX-2 and HepaRG® human cell lines (IC50 ∼ 30 μM). Finally, to develop a CO storage and release material that is readily applicable to therapeutic situations, CORM-Dabsyl was loaded on low-cost and easily disposable paper strips, from which the light triggered CO-release was conveniently visible with the naked eye.
  • Item
    An artificial photosynthetic system for photoaccumulation of two electrons on a fused dipyridophenazine (dppz)-pyridoquinolinone ligand
    (Cambridge : RSC Publishing, 2018) Lefebvre, Jean-François; Schindler, Julian; Traber, Philipp; Zhang, Ying; Kupfer, Stephan; Gräfe, Stefanie; Baussanne, Isabelle; Demeunynck, Martine; Mouesca, Jean-Marie; Gambarelli, Serge; Artero, Vincent; Dietzek, Benjamin; Chavarot-Kerlidou, Murielle
    Increasing the efficiency of molecular artificial photosynthetic systems is mandatory for the construction of functional devices for solar fuel production. Decoupling the light-induced charge separation steps from the catalytic process is a promising strategy, which can be achieved thanks to the introduction of suitable electron relay units performing charge accumulation. We report here on a novel ruthenium tris-diimine complex able to temporarily store two electrons on a fused dipyridophenazine-pyridoquinolinone π-extended ligand upon visible-light irradiation in the presence of a sacrificial electron donor. Full characterization of this compound and of its singly and doubly reduced derivatives thanks to resonance Raman, EPR and (TD)DFT studies allowed us to localize the two electron-storage sites and to relate charge photoaccumulation with proton-coupled electron transfer processes.
  • Item
    Covalent Linkage of BODIPY-Photosensitizers to Anderson-Type Polyoxometalates Using CLICK Chemistry
    (Weinheim : Wiley-VCH, 2021) Cetindere, Seda; Clausing, Simon T.; Anjass, Montaha; Luo, Yusen; Kupfer, Stephan; Dietzek, Benjamin; Streb, Carsten
    The covalent attachment of molecular photosensitizers (PS) to polyoxometalates (POMs) opens new pathways to PS-POM dyads for light-driven charge-transfer and charge-storage. Here, we report a synthetic route for the covalent linkage of BODIPY-dyes to Anderson-type polyoxomolybdates by using CLICK chemistry (i. e. copper-catalyzed azide-alkyne cycloaddition, CuAAC). Photophysical properties of the dyad were investigated by combined experimental and theoretical methods and highlight the role of both sub-components for the charge-separation properties. The study demonstrates how CLICK chemistry can be used for the versatile linkage of organic functional units to molecular metal oxide clusters. © 2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH
  • Item
    Unraveling the Light-Activated Reaction Mechanism in a Catalytically Competent Key Intermediate of a Multifunctional Molecular Catalyst for Artificial Photosynthesis
    (Weinheim : Wiley-VCH, 2019) Zedler, Linda; Mengele, Alexander Klaus; Ziems, Karl Michael; Zhang, Ying; Wächtler, Maria; Gr-fe, Stefanie; Pascher, Torbjörn; Rau, Sven; Kupfer, Stephan; Dietzek, Benjamin
    Understanding photodriven multielectron reaction pathways requires the identification and spectroscopic characterization of intermediates and their excited-state dynamics, which is very challenging due to their short lifetimes. To the best of our knowledge, this manuscript reports for the first time on in situ spectroelectrochemistry as an alternative approach to study the excited-state properties of reactive intermediates of photocatalytic cycles. UV/Vis, resonance-Raman, and transient-absorption spectroscopy have been employed to characterize the catalytically competent intermediate [(tbbpy)2RuII(tpphz)RhICp*] of [(tbbpy)2Ru(tpphz)Rh(Cp*)Cl]Cl(PF6)2 (Ru(tpphz)RhCp*), a photocatalyst for the hydrogenation of nicotinamide (NAD-analogue) and proton reduction, generated by electrochemical and chemical reduction. Electronic transitions shifting electron density from the activated catalytic center to the bridging tpphz ligand significantly reduce the catalytic activity upon visible-light irradiation. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.