Search Results

Now showing 1 - 2 of 2
  • Item
    Efficient network immunization strategy based on generalized Herfindahl–Hirschman index
    ([London] : IOP, 2021) Chen, Peng; Qi, Mingze; Lu, Xin; Duan, Xiaojun; Kurths, Jürgen
    The topic of finding effective strategies to restrain epidemic spreading in complex networks is of current interest. A widely used approach for epidemic containment is the fragmentation of the contact networks through immunization. However, due to the limitation of immune resources, we cannot always fragment the contact network completely. In this study, based on the size distribution of connected components for the network, we designed a risk indicator of epidemic outbreaks, the generalized Herfindahl–Hirschman index (GHI), which measures the upper bound of the expected infection's prevalence (the fraction of infected nodes) in random outbreaks. An immunization approach based on minimizing GHI is developed to reduce the infection risk for individuals in the network. Experimental results show that our immunization strategy could effectively decrease the infection's prevalence as compared to other existing strategies, especially against infectious diseases with higher infection rates or lower recovery rates. The findings provide an efficient and practicable strategy for immunization against epidemic diseases.
  • Item
    Neural partial differential equations for chaotic systems
    ([London] : IOP, 2021) Gelbrecht, Maximilian; Boers, Niklas; Kurths, Jürgen
    When predicting complex systems one typically relies on differential equation which can often be incomplete, missing unknown influences or higher order effects. By augmenting the equations with artificial neural networks we can compensate these deficiencies. We show that this can be used to predict paradigmatic, high-dimensional chaotic partial differential equations even when only short and incomplete datasets are available. The forecast horizon for these high dimensional systems is about an order of magnitude larger than the length of the training data.